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“ PRECISION 
MEDICINE 

To best treat cancer, we 
must fi rst understand how 

the  disease will develop.  
The research in DoMore! 

will enhance our ability to 
predict the development 
of a patient’s cancer, and 

thereby a more precise 
treatment for each patient.
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The DoMore! project was in 2016 selected as one 
of the Norwegian Research Council’s Lighthouse 

projects aiming to solve large societal challenges 
using cutting-edge technology. We have a team 
of national and international experts within many 
different fields, including digital image analysis, 
tumor pathology, cancer surgery, and oncology. 

An essential element of the Lighthouse projects 
is to work in cooperation with users, public and 
commercial players to convert knowledge into clinical 
applications. A basis of our selection was the potential 
for value creation, products, and spinoffs that could 
produce the greatest impact. The DoMore! project will 
run until the summer of 2021 under the Director of the 
Institute for Cancer Genetics and Informatics (ICGI) 
and DoMore! Project Manager, Professor Håvard E. 
Greger Danielsen.

FROM HUMAN DECISION-
THINKING TO ARTIFICIAL 
INTELLIGENCE
We have since the beginning of the project been 
working to utilize new technology to improve 
prognostication of cancers using digital tools for 
pathology. We have been developing a complete 
transferal of complex human decision-making from 
its current basis in visual observation to a computer 
basis by the use and development of methods based 
on artificial intelligence (AI). 

We are basing our concepts on image analysis and more 
specifically on deep learning, texture analysis, and 

DNA analysis. We are studying the effect of sampling 
in the prostate-, lung- and colorectal cancers, and on 
histological grading, DNA measurements, and gene 
expression analysis. The experiments described in 
this report are designed such that multiple samples 
from each patient and tumor are examined with 
the goal of modeling the heterogeneity in prostate-, 
colorectal- and lung cancer and analyzing the effect 
of sampling on the strength of the prognostic markers.
At the end of 2018, we reached our mid-way point of 
the 5-year long project. The project description has 
been updated to reflect the current partnerships and 
project plans, which are detailed in the pages that 
follow. The general results obtained so far will be 
reported here, but for specific results that are, or are 
to be, published in scientific journals, we have to refer 
the reader to these publications. 

The goal has been to increase the number of 
diagnostic and prognostic tests for cancer patients 
to provide a more accurate prognosis for the patient. 
Our results so far show that it is, in fact, possible to 
teach a computer, not only to do the same but through 
Deep Learning and Big Data, to establish more robust 
grading systems in cancer types where pathology is 
less successful, while at the same time eliminating 
the subjective component.  
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The main goal for DoMore! is to develop generic 
and objective digital prognostic markers for 

cancers in the prostate, colon, rectum and lung.
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Tumors are heterogeneous with regions containing 
different genetic or epigenetic aberrations, which pose 
a great challenge for the prognostication of cancer. 
The biomarkers used to identify the aggressiveness 
of a tumor are not distributed evenly throughout the 
tumor, and by sampling only a minuscule amount of 
the tumor, there is a great risk of missing the cells 
that might lead to a patient’s death. 

 The experiments in this project have been designed 
such that multiple samples from each patient and 

tumor are examined with the goal of modelling the 
heterogeneity in prostate, colorectal, and lung cancer 
and analyzing the effect of sampling on the strength 
of the prognostic markers.

Work package 1 (WP1) has been responsible for the 
production of all samples to be analyzed in DoMore! 
(Progress is shown in the Gantt chart below). The 
DoMore! project so far includes more than 66 000 
samples of 2 886 tissue blocks from 7 028 patients. 
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Deliverables for WP1 were as follows: For each tissue 
block or biopsy included in the DoMore! project the 
lab was to produce 1-4 virtual slides, one DNA section 
and one monolayer.

VIRTUAL SLIDE
A virtual slide is a scanned H&E stained 3μm tissue 
section, whereas the virtual slide production line in 
the laboratory also involves all tissue sectioning for 
all image types.

Virtual slides are used in WP2 for Histotyping (tumor 
grading), WP3 for tumor delineation and in WP4 for 
quantification of stroma, Gleason grading, mitotic 
index and microtracking (co-analysis of different 
features on a cell-to-cell basis). 

Each block is sectioned, obtaining (at least, but not 
limited to): one 3μm section, two 5μm thick sections, 
and one 50μm section. The 3μm section is stained 
with Hematoxylin and Eosin (H&E), and then our 
in-house pathologist marks the tumor area in each 
section. Using the H&E as guidance, the same area 
on the paraffin block is marked, with a sharp tool. 
When sectioning the 50μm scroll, we only collect 
the area marked as the tumor area. This is followed 
by a new 3μm section (stained with H&E), which the 
pathologist uses as a control section to verify that 
there is still tumour tissue left.

In order to develop methods that are invariant o 
imaging devices, all slides are scanned using scanners 
from at least two ajor vendors (Leica, Hamamatsu). 
Also, for the tumor delineation project in WP3, we 
needed tissue sections both with the pathologists 
marking of tumor area, as well as the same tissue 
section without any tumor marking. Based on this, we 
have so far produced 59 893 individual scanned H&E 
sections (Virtual slides) in DoMore! 

DNA SECTION
DNA sections are used in WP3 for automatic 
segmentation of cell nuclei, and in WP4 for transation 
of DNA ploidy and Nucleotyping analysis from 
monolayers to tissue sections. 

5μm sections are first stained with H&E and scanned, 
then de-stained and re-stained with Feulgen, a DNA 
specific stain, before it is scanned again. Our in-
house pathologist marks the tumor area on the H&E 
section, the H&E and Feulgen stained sections are 
then overlaid using the marked tumor area on the 
H&E section to guide the measurement of DNA in 
the Feulgen stained section. The final measurements 
are initially performed on an automatic microscope 
system developed at the institute. We are currently 
also exploring the possibilities of replacing these 
microscope systems by scanners.

MONOLAYER
Monolayers, slides with isolated cell nuclei, are used 
for DNA ploidy and Nucleotyping analysis (see WP4).
 
From a 50μm thick tissue scroll cell nuclei are 
isolated and spun onto a glass slide. The nuclei are 
then stained with the DNA-specific Feulgen stain, 
and measured on an automatic microscope system 
developed at the institute.
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THE MATERIALS
All the prostate cancer patient material in DoMore! 
are from hospitals in Norway; The Oslo University 
Hospital (OUS 1987-2005, OUS 2000-2006) and 
Vestfold Hospital Trust (Sykehuset i Vestfold, SIV) (SIV 
RP 1999-2006, SIV RP 2007-2010, SiV AS 2005-2015). 
These patient samples have been readily available 
to us, and the lab has completed all the deliverables 
related to these patient materials. We lack some 
recent samples from patients enrolled in the Active 
Surveillance program at Vestfold Hospital Trust, but 
are continuously including these as the patients are 
getting biopsied as part of their follow up.

For colorectal cancer, all the patient materials 
included in DoMore! are provided by our 
collaborators in England; The University of Oxford 
(VICTOR, QUASAR2), Cheltenham General Hospital 
(Gloucester, Gloucester Stage II), Royal Liverpool 
University Hospital (Liverpool CRLM) and John 
Radcliff Hospital (Oxford TEM). Acquiring tissue from 
collaborators abroad has provided some challenges. 
Due to, among others, the newly implemented GDPR 
regulations, there have been delays in getting all legal 
aspects of transferring tissue to and from Norway in 
order. However, by being very flexible and quickly 
reprioritising tasks when needed, the laboratories 
have throughout the project maintained a continuous 
workflow. 

Image types Virtual slide (A), DNA section (B), Monolayer (C) and gene expression shown with 
antibody binding to protein (D).

A B C

D
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 One of the prostate cancer patient materials 
(Nijmegen/Oxford) and two of the colorectal patient 
materials (AKER1, AKER2), initially included in 
DoMore! turned out to be difficult to obtain. As a 
substitute for this, we included three new colorectal 
patient series (Gloucester Stage II, Liverpool CRLM, 
Oxford TEM). We are still seaking the replacement for 
the missing prostate material.

We have completed the deliverables for all the 
colorectal patient series, except for the patients in 
Liverpool CRLM. This patient material was included 
in 2018, and we are also expanding this material to 
include both primary tumors and liver metastasis from 
these patients. We expect to finish all deliverables 

from the Liverpool CRLM by Q2 2019. 

The lung cancer patient material in DoMore! are 
from the Oslo University Hospital (Lung OUS) and 
University College London (TRACERx). During the 
project period, it became clear that UCL would not be 
able to provide all tissue samples as initially agreed 
upon. The DoMore! project will still receive tissue 
samples from the TRACERx trial. However, there will 
be fewer samples available than we initially planned 
for. To maintain the same amount of included patients 
and tissue samples we have obtained a new lung 
cancer patient series from Oslo University Hospital 
(Lung OUS). 
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WP2

HISTO-
TYPING
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Histopathology refers to the microscopic 
examination of tissue to study the manifestation 

of disease. In the DoMore! project, all patients have 
been diagnosed with cancer, and their tumours 
were surgically resected. 

Histotyping

Deep convolutional 
neural networks



12

The histopathologists study the appearance of the 
resected specimen and assess relevant properties, 
such as the tumour grade. Tumour grading is an 
evaluation of the extent to which tumour cells and 
tumour tissue resemble normal cells and tissue, 
where a high degree of similarity (well differentiated) 
is associated with a better prognosis for the patient 
than a low degree of similarity (poorly differentiated). 
The analysis is carried out in HE-stained tissue 
sections. Tumour grade is a good prognostic marker, 
but a substantial proportion of patients are classified 
as moderately differentiated, i.e., an intermediate 
group with an intermediate outcome. The increasing 
workload for pathologists as well as significant 
intra- and interobserver variability implies a need for 
automated methods for this task.

AUTOMATION
We have developed Histotyping, a fully automated 
histological characterisation of HE-stained sections 
from cancer specimens for prognostic purposes. The 
method is based on deep learning by convolutional 
neural networks trained on images of HE-stained 
tissue sections where the patient outcome is used to 
guide the training process into a system that is able 
to identify tissue patterns in the HE-sections that are 
distinct for patient prognosis. The resulting computer 
model can be applied to a new patient’s tumour 
sample and estimates the probability of a poor patient 
outcome. 

RISKS AND 

PREVENTIONS
Large amounts of labeled data are required to train 
this type of deep convolutional neural network and not 
until recent years have we had the required datasets 
and computational resources to perform these types 
of analyses. The neural network models have millions 
of features and overfitting to the training dataset is 
a common problem, i.e., that the computer model 
identifies and exploits artifacts in the training dataset 
that are associated with the desired outcome, but have 
no biological relevance and fails when evaluated on a 
new dataset on which it is not trained. To increase the 
probability that the neural network generalises when 
applied to new patients from a new dataset, we have 
used a robust design with thousands of patients from 
different patient cohorts with the same cancer type 
(Table 1). We have developed the framework on stage 
I-III colorectal cancer patients from two hospitals 
in Norway and from two clinical trials in England. 
Another risk in the development of such models is 
the adaption to the technical equipment such as 
the imaging system, i.e., that the method works well 
on images scanned with the scanner on which it is 
developed and not on images from a scanner from 
another vendor. To compensate for this problem, we 
have scanned all images with scanners from two major 
scanner manufacturers (Hamamatsu and Leica). 

PaƟ ent cohort Number of paƟ ents Purpose
Ahus 160 Develop the method
Aker 578 Develop the method
Gloucester 979 Develop the method
The Victor trial 828 Develop the method
Samples from Gloucester prepared 
externally

979 Test the robustness to technical vari-
aƟ on

SCOT 250 Test the method
Colorectal samples from the Cancer 
Genome Atlas (TCGA)

616 Test the method in a technically very 
diff erent dataset

Quasar 2 1140 Validate the method

Table 1: Colorectal cancer patient cohorts and purpose in the development of Histotyping
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A third risk in the development of a computerised 
system for risk assessment based on scanned HE-
sections is the dependence on lab preparation, i.e., 
that the method works on scans of tissue sections 
prepared and stained in the lab where the method 
is developed only. To evaluate this, we have scanned 
parallel sections from one of the patient cohorts 
(Gloucester) that have been prepared in the pathology 
routine there. 

We have partitioned our patient datasets to make the 
best use of the data. The Kaplan-Meier plots below 
illustrate results based on images scanned with 
10x, and 40x lens analyzed in corresponding neural 
network models and classified according to the 
agreement between the two models’ classifications 
in a test partition that has not been included in the 
training process. 

Kaplan-Meier plot of cancer-specifi c survival 
probability grouped by classifi cation by 10x and 40x 
models and their agreement based on scans from 
the Leica Aperio scanner.
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HISTOTYPE
Any of a range of tissue types that 

arise during the growth of a tumour

“
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Histotyping: 1) Samples are fed into the scanner. 2) The scanner scans the tissue sections, adjusting focus to get the best 
result possible. 3) The scans are sent to the deep learning models, running on GPUs where 4) the tumour region in each 
scanned sample is automatically segmented, 5) the outlined tumour is further, 6) divided into tiles, and 7) automatically 
assigned a probability for representing poor prognosis. Each tile is toned blue for good, or red for a bad prognosis. 8) Finally 
a report is generated, where patient prognosis is estimated based on the individual tiles’ prediction values. The diff erent 
tumour regions’ contribution to the patient classifi cation are illustrated as demonstrated in the image on the left page.
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WP3

SEGMEN-
TATION
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The automatic identification of cell nuclei in 
Feulgen-stained histological sections and 

automated detection of tumour regions in HE-
sections forms the basis for a majority of the 
DoMore! applications. These two tasks are different 
and treated in separate projects, described in the 
following.
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AUTOMATIC SEGMENTATION OF CELL NUCLEI

The detection and segmentation (draw around) of 
cell nuclei in Feulgen-stained histological sections 
is required for the subsequent analyses of DNA 
ploidy status and Nucleotyping. The Feulgen-stain 
binds specifically to DNA and allows the analysis of 
chromatin properties such as amount and structure. 
Visually the task of identifying and segmenting cell 
nuclei seems relatively simple to the human eye, but 
designing robust computer algorithms for this task 
has been a great challenge for digital image analysis.

In 2012 we published a method for the automated 
segmentation of cell nuclei in Feulgen-stained 
histological sections from prostate cancer [ref Nielsen 
et al., Cytometry A. 2012 Jul;81(7):588-601. doi: 
10.1002/cyto.a.22068]. The method worked well in 

prostate cancer specimens but did not when applied to 
colorectal cancer specimens, where the cell- and tissue 
organisation is different. We have used deep learning 
with convolutional neural networks to develop a 
novel method for the automatic segmentation of cell 
nuclei in colorectal cancer. The new method is trained 
using 300 000 manually delineated cell nuclei in 139 
patients and validated in histological sections from 
51 independent patients, in which 104 000 manually 
delineated nuclei were available as a ground-truth in 
comparison. The image on the right illustrates result 
from the neural network model that was adapted to 
the problem. This new me thod has proven to work for 
prostate cancer as well, and a validation study in lung 
cancer is in progress. 
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Automatic segmentation of cell 
nuclei (fi ll with colour (burgundy) 
refl ecting probability of true cell 
nucleus identifi cation reported 
from the computer model, where 
deeper colours represent higher 
probabilities). Light blue outlines 
are manually segmented cell 
nuclei.
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Tumour delineation: 
Manual (green line) and 

automatic (blue line) tumour 
delineation

.  
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AUTOMATIC SEGMENTATION OF CANCEROUS 

TUMOUR REGIONS
Pathologists examine tumours and classify them as 
cancerous or non-cancerous. Our analyses of cancer 
patients are carried out in the cancerous tumour 
regions, and a method to identify these regions 
automatically is thus required. We have used deep 
learning with convolutional neural networks trained 
on a dataset of 2573 semi-manually delineated 
colorectal tumour samples to develop such a method. 
The resulting computer model is validated on a 
different set of 857 samples. The approach works well, 
with 93% sensitivity (the proportion of cancerous 
tumour region in the ground-truth also identified 
by the deep learning model) and 97% specificity (the 

proportion of non-cancerous region in the ground-
truth also identified by the deep learning model), i.e. 
a good correlation with the pathologist’s delineation. 
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DEEP NEURAL 
 NETWORKS

A deep neural network is an  artifi cial 
neural network with multiple  layers 
between the input and output lay-
ers. The deep neural network fi nds 
the correct mathematical manipula-
tion to turn the input into the output, 
whether it be a linear relationship or a 
non-linear relationship. The network 
moves through the layers calculating 

the probability of each output.

“
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EVALUATION OF RESULTS

To evaluate the quality of our new methods to 
segment cell nuclei and tumour regions, we need 
methods that objectively quantify the degree of 
correspondence with the ground-truth. Ground-truth 
for the segmentation of cell nuclei is represented by 
manually segmented cell nuclei, while the ground-
truth for cancerous tumour regions is in the form of 
annotations drawn by a pathologist. There is a lack of 
consensus for methods to evaluate the quality of these 
two approaches, although some methods are more 
frequently used than others, such as the Jaccard index 
which is defined as

given two sets X and Y (i.e. the number of overlapping 
pixels in the predicted segmentation and the ground-
truth divided by the total number of unique pixels in 
the predicted segmentation and the ground-truth). 
We have implemented a range of measures to evaluate 
our results robustly, exemplified for the automatic 
segmentation of cell nuclei below.
 

. . .

. . .

. . .

1 . . .

1

Segmentation evaluation measures
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WP4

DIGITAL 
PRECISION 
DIAGNOS-
TICS 
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The DoMore! project aims to develop novel 
diagnostic and prognostic methods that are 

easily integrated into standard clinical routine, as 
well as a method to digitize and automate existing 
tasks in pathology.

Scatter plot of chromatin value measured using a bright-fi eld microscope and a whole-slide digital scanner. The red 
lines depict the threshold for dichotomising chromatin values; the classifi cation is chromatin heterogeneous (CHE) if the 
chromatin value is smaller than the threshold and otherwise chromatin homogeneous (CHO). Pearson correlation coeffi  cient 
was 0.98 (95% confi dence interval [CI] 0.97-0.98; p < 0.0001) between the chromatin values and 0.89 (95% CI 0.86-0.91; 
p < 0.0001) between the chromatin classifi cations. Since the microscope was equipped with a 546 nm green fi lter and a 
monochrome digital camera while the scanner acquired colour images which were converted to grey scale by averaging, the 
integrated optical density (IOD) was typically far less in the scanner images and therefore the element width was reduced 
from 25 to 7.5 in the DNA ploidy histogram computed as a part of the image normalisation method, although the correlation 
was nearly as good without this adjustment (0.95 between chromatin values and 0.84 between chromatin classifi cations).  
From Kleppe & Danielsen, Oncotarget 9(65):32406-32407, 2018.
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One main aim in the DoMore! project is to develop 
methods that are easily integrated into standard 
clinical routine. Our main methods DNA ploidy 
and Nucleotyping have been developed on specially 
prepared samples from the cell suspension, called 
monolayers, where intact cell nuclei are spun onto a 
glass slide and imaged with a microscope. Both the 

special preparation and the microscope are factors 
that decrease the availability of the methods. It is 
thus an aim to develop methods that work on routine 
histological sections scanned with a scanner rather 
than a microscope. 

ABERRANT DNA 
CONTENT

in cancer cell  nuclei is measured with 
DNA ploidy and is a marker for poor 

prognosis in  several cancer types

“

DNA organisation Double-stranded DNA wraps around 
histone proteins to form nucleosomes that have the 

appearance of “beads on a string.” The nucleosomes are 
coiled into a 30-nm chromatin fi ber. When a cell undergoes 

mitosis, the duplicated chromosomes condense even 
further.
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Alternative DNA ploidy pipelines in our laboratory

DNA PLOIDY

Deviations from the normal configuration with two 
copies of each chromosome are relatively common in 
cancer cells and are associated with a worse prognosis 
for the patient. DNA ploidy by image cytometry 
estimates the total DNA content in cancer cell nuclei 
and classifies a sample as normal (diploid) or abnormal 
(non-diploid) based on the evaluation of a histogram of 
DNA content in about 1500 cell nuclei. The method is 
well established, and its prognostic impact in several 

cancer types is well documented [ref Danielsen et al. 
Nat Rev Clin Oncol. 2016 May;13(5):291-304]. In the 
DoMore! project we extend the DNA ploidy method 
first to make use of scanners rather than microscope, 
and then to be able to analyse the nuclei directly in 
routine sections, thus eliminating the need for special 
preparations of monolayers. 
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DNA PLOIDY ON A SCANNER

High-resolution scanners will become common 
equipment in pathology departments with the 
digitalisation of pathology. Scanning of slides is 
highly automated in these systems, with functions 
for scanning a rack of 400 or more slides overnight. 
We have adapted the DNA ploidy method on 
monolayers to work on the scanner. Due to the 
slightly lower resolution on the scanner compared to 
the microscope, the ability to detect small differences 
in DNA content is better on the microscope system, 
but for the majority of non-diploid samples, the DNA 
content representing the abnormal cell population is 
significantly higher than the normal cell population 
and as such not a problem for practical purposes. We 

have compared the resulting DNA ploidy classification 
in the two methods in 246 colorectal cancer samples 
where 236 (96%) had identical classification with the 
two methods. The few with different classification 
were due to cell populations with slightly aberrant 
DNA content compared to the normal diploid cell 
population where the scanner system did not identify 
them as aberrant. 

The clinical implication of such hyperdiploid 
subpopolations is unclear and studies are underway 
to compare the prognostic power of these two different 
ways of analysing ploidy distributions in tumors.
 

Above: DNA content histograms from the scanner (left) and microscope  (right)
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DNA PLOIDY IN HISTOLOGICAL SECTIONS

Methods that can be applied to routine sections are 
easier to implement in the clinic. The overall aim 
of this particular project is to develop a method 
for the estimation of DNA ploidy status in HE-
stained routine sections. An important step in the 
development process is to estimate DNA ploidy status 
in Feulgen-stained histological sections; the HE-stain 
can be removed and replaced with Feulgen-stain and 
imaged before the section is restained with HE-stain. 
Feulgen-stain is DNA-specific and stoichiometric 
and thus allows for more precise measurement of 
DNA content than the HE-stain. The main challenges 
in the development of a method for the estimation 
of DNA content in histological sections are 1) the 
segmentation of cell nuclei and 2) the DNA content 
estimation from a profile (5μm) of a cell nucleus. A 
method for the automatic segmentation of cell nuclei 
has been developed based on deep learning with 
convolutional neural networks (see work package 3). 
Methods for the estimation of DNA content in thin 
histological sections have been reported earlier (e.g., 

Haroske et al. 1993) and we have implemented a 
variant of the method proposed by Haroske et al., and 
find good correspondence between the monolayer 
DNA ploidy estimate and the histological section 
estimate in tissues with near spherical shaped 
nuclei, such as prostate. In a dataset of 236 samples 
where we estimated DNA ploidy in both monolayers 
and histological sections, 188 (80%) had the same 
classification. So, the preliminary data shows promise, 
but further work is on-going to optimize and adapt 
the method. 
 

Diploid 
monolayer

Non-diploid 
monolayer

Diploid 2D 162 14

Non-diploid 2D 34 26

Correspondence between DNA ploidy classifi cation in 
monolayer samples and histological sections

DNA ploidy histograms from 
two monolayer samples (left) 
and histological sections from 
the same tumour block (right)
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NUCLEOTYPING
   The assessment of  chromatin 

heterogeneity“

NUCLEOTYPING

Chromatin structure in cancer cell nuclei is related to 
transcriptional activity and other cellular processes. 
We have developed a framework to characterize the 
chromatin structure based on grey level entropy in 
Feulgen-stained cell nuclei, where the disorder of grey 
levels reflects the DNA distribution in local regions. 
This characterization, termed Nucleotyping, has 
been developed on monolayer samples and found to 
discriminate cancer patients with different prognosis. 
The approach has been validated in datasets of 
different cancer types. In the DoMore!-project we have 
demonstrated that Nucleotyping is a general marker 
across cancer types (Kleppe et al. Lancet Oncol. 2018 
Mar;19(3):356-369) and that the proportion of nuclei 
inhabiting variants of these properties also are strong 
prognostic markers across gynaecological cancer 
types (Nielsen et al. J Natl Cancer Inst. 2018 Dec 
1;110(12):1400-1408). 

We now focus our work on transferring the concept 
to histological sections, which are different from 
the specially prepared samples from cell suspension 
used till now for Nucleotyping. The cell nuclei are not 
complete due to the sectioning of 5μm sections and 
require more advanced methods to be automatically 
segmented. On the other hand, the cells are imaged 
in their original context in the tissue providing new 

opportunities for characterization. The previously 
described method for automated segmentation of cell 
nuclei in tissue sections with convolutional neural 
networks is also used in this project. We currently 
work on the colorectal cancer dataset (about 600 
patients treated at Aker University Hospital) in which 
the automated segmentation method is developed 
as well as another colorectal cancer dataset (The 
Gloucester Colorectal Cancer Study with more than 
900 patients) to develop the Nucleotyping method in 
histological sections. Till now we have implemented 
the methods used for Nucleotyping in monolayers and 
will evaluate their prognostic impact. Preliminary 
results are promising with trends indicating a 
prognostic role for the same methods as in monolayer 
samples. Extensions of the existing method include 
incorporating the contextual information from the 
surrounding tissue as well as the implementation of 
novel methods for the quantification of chromatin 
properties. This wil be a focus project in DoMore! for 
the next year or two.
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Computation of the grey level entropy matrix (GLEM) and visualisation of nuclear images

(A) Illustration of GLEM computation. 
(1) A nuclear image. (2) Each nuclear 
pixel is taken to be the centre of 
a square subregion, here with a 
side length of nine pixels. (3) For 
each subregion, two quantities are 
extracted (the grey level of the centre 
pixel [here 21] and the entropy of 
the grey levels in the subregion [here 
3·2]); the entropy H is a variability 
characteristic of the probability mass 
function P(i) (ie, the histogram that 
gives the probability P that grey level 
i occurs in the subregion). (4) The 

two quantities extracted from the 
subregion will together identify a 
position in a two-way table. The table 
cell position corresponding to the 
subregion in fi gure part 3 of panel A 
is marked by a green circle in part 4 
of panel A. The occurrence is counted 
by incrementing the value at the table 
cell position (initially, all table cell 
values are 0), and the computation of 
the two quantities and incrementation 
of the corresponding table cell value 
is performed for every subregion of 
the nuclear image. The resulting table 

describes the frequency of each pair 
of centre grey level and surrounding 
entropy and is normalised by its 
total count to provide the bivariate 
probability mass function called the 
GLEM. The two-way table visualised 
in part A4 is the GLEM of the nuclear 
image in part A1. (B) Depiction of fi ve 
nuclear images and their chromatin 
value. The threshold applied to 
dichotomise the chromatin value was 
0·044.
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The Gleason grading 
system

Example of detected 
cell nuclei and the 
corresponding 
minimum spanning 
tree (yellow dots and 
lines)
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AUTOMATIC GLEASON SCORING

Donald Gleason was an American physician and 
pathologist who identified tissue patterns in 
prostate cancer specimens that were associated 
with patient prognosis. A grade between 1 and 5 
was assigned each of the tissue patterns, such that 
a higher grade corresponded with more aggressive 
disease. The dominant and predominant grades 
were identified, resulting in a Gleason score 
representing the two main tissue patterns, e.g., 
3+4(=7). The Gleason grading system assessed by 
uropathologists is a very strong prognostic marker 
for prostate cancer patients and is routinely assessed 
in this patient group. Specialized pathologists are a 
scarce resource and increasingly so with the rising 
incidence numbers for this cancer type.

Furthermore, the intra- and interobserver variation 
for Gleason scoring is significant. There is thus a 
need for alternative methods for the assessment of 
Gleason score in prostate cancer tissue specimens. 
We have developed a method that estimates the 
Gleason score in HE-stained tissue sections from 
prostate cancer specimens based on cell organisation 

and duct features. The method identifies cell nuclei 
and ducts, calculates a minimum spanning tree 
based on the cell nuclei positions and uses features 
from the minimum spanning tree together with 
features describing the ducts in a support vector 
machine classifier to estimate a Gleason grade to the 
image. The method has been trained and validated 
on a set of images with homogeneous Gleason 
grade assessed by uropathologists. The validation 
results are good, and we are currently working on 
implementing a version of the application that has 
a simple user interface, and that can be applied to 
whole sections. 

Concordance between pathologist (columns) and computer (rows) based 
Gleason grading in the discovery (training) and validation (test) datasets. 
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The cell cycle describes the series of stages 
eukaryote cells pass through during cell 

division. This description is essential in the 
understanding of carcinogenesis and for the 
development of new methods for improved 

characterisation of cancer. Several of the 
DoMore! projects, such as DNA ploidy, are 

closely linked to the cell cycle.

Kaplan-Meier plot of survival probability grouped by 
quartiles of standardized computerized mitotic fi gure 

counts in 125 leiomyosarcoma patients
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AUTOMATIC MITOTIC INDEX ASSESSMENT

The proportion of cells undergoing cell division is a 
prognostic marker for several cancer types, where a 
higher proportion for most cancer types is associated 
with a worse prognosis. The counting of cells 
undergoing mitosis is one method to assess the degree 
of cell proliferation in a tissue sample. Pathologists 
normally count the number of mitotic figures in ten 
high-power fields, providing a standardized count for 
the patient. The process is laborious, and the inter- 
and intraobserver variation is significant. There is 
thus the interest in an accurate and computerized 
measurement of this property. We have trained a 
convolutional neural network to identify mitotic 
figures in a publicly available breast cancer dataset 
used in challenges in biomedical imaging such as the 

Tumor Proliferation Assessment Challenge (TUPAC). 
The resulting neural network model was then 
validated on a set of leiomyosarcomas and indicated 
that the method works as intended. We continue 
our work with improving the neural network model 
and extending the validation dataset to comprise 
all uterine sarcomas in Norway between 1970 and 
2000 as described by Abeler et al. (ref Abeler et al. 
Histopathology. 2009 Feb;54(3):355-64).

When completed, the plan is to validate this method 
on a large breast cancer material to demonstrate 
clinical feasibility and implementation. 

Examples of mitotic index annotation in breast cancer tissue samples
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Stroma 
detection 
Stroma cells are 
automatically 
detected and 
shown in red.

1a 1b

2a 2b
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AUTOMATED 

ESTIMATION OF 

STROMA FRACTION

The tumor microenvironment is the cellular 
environment in which a tumor exists. A tumor and the 
surrounding microenvironment are closely related 
and interact constantly. For simplicity, the tumor is 
often analyzed in isolation although the dependence 
on the surrounding tumor environment is well 
known. Stroma is a major component in the tumor 
microenvironment, and the stroma-to-epithelial 
proportion has been reported to be a prognostic 
factor for colorectal cancer patients based on manual 
assessment [e.g., Huijbers et al. Ann Oncol. 2013 
Jan;24(1):179-85], where a higher stroma fraction is 
associated with a worse prognosis. We have developed 
a method to assess the stroma fraction in HE-
stained routine histological sections automatically 
and validated its prognostic impact in colorectal 
[Danielsen et al., Ann Oncol. 2018 Mar 1;29(3):616-
623] and prostate cancer [Ersvær et al. manuscript 
submitted]. We use a fixed threshold to categorize the 
stroma fraction as low or high. Furthermore, we have 
combined the stroma fraction estimate with DNA 
ploidy status to integrate prognostic information 
from a tumor and its microenvironment. The method 
can be easily int egrated into a clinical routine at a low 
cost. 

Kaplan-Meier plot of cancer-specifi c survival probability 
grouped by ploidy and stroma status in colorectal stage II 
patients.
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WP5

DATA 
FLOW 
AND 

QUALITY 
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The DoMore! project handles a huge number 
of images. The success of the project relies on 

these images to have good enough quality to ensure 
that the algorithms works. Our priority now is on 
understanding and control the various factors that 
influence the image quality of the scanner, such 
as magnification, resolution, image compression, 
darkcurrent, glare, diffraction and not at least focus. 
A main challenge is to understand and mimick how a 
human distinguishes a focused from an unfocused 
image. 
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The scanner company is responsible for producing 
images with reliable and stable quality, but experience 
has taught us that scanners more or less frequently 
produces images that are partially or totally out of 
focus. Manual control detects many of these cases. 
However, an automatic algorithm could increase the 
likelihood of detecting unfocused images and thus 
ensure a better result in the final analysis. In Task 5.1 
and 5.2, focusing quality is the common denominator. 
The effort has therefore been to establish an automatic 
grading of the focus quality of images produced by 
microscopes and scanners. Two different approaches 
have been used. 

Wp5 consists of seven subtasks. So far, the activity has 
been focused on Task 5.1; A survey of image-focusing 
algorithms with emphasis on texture analysis, Task 
5.2; Analysis if image quality variation and Task 5.3; 
File formats and compression.

MICROSCOPY IMAGES
For microscopy imaging, we do have the possibility of 
adjusting the image focus, i.e., performing autofocus. 
In autofocusing, a quick search is done to find the lens 
position that gives the best-focused image according 
to some criteria. This can be done sequentially for a 
small increment in the lens position, or iteratively for 
decreasing increments, moving the lens back and forth 
to the position where a given focus measure of the 
given image is a maximum. Even though autofocusing 
has been a long-standing topic, most of the papers 
published on the subject are devoted to proposing 
a new method that is marginally different from 
previous ones and testing the performance on just a 
few selected images. A few surveys and comparisons 
of focus measures exist, but the focusing problem is 
generally related to the imaging modality and field of 
application.
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Thin tissue sections include profi les rather than complete cell 
nuclei, representing a challenge e.g. for the estimation of total 
DNA content. Furthermore, the relatively short depth of fi eld of 
the microscope system allows the imaging of diff erent optical 
sections.
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Our task is to find an optimally focused image of a 
microscopy image of cells, containing structures 
at several scales having a variety of grey level 
gradients, where the final image processing step 
is a statistical and/or structural texture analysis 
of the grey level morphology of the cell nuclei. 
Thus, we do not only need to find the “best” 
focusing algorithm, but also to investigate if the 
choice of focusing algorithm can result in some 
selection effects when it comes to the subsequent 
texture analysis. 

To determine the performance of various 
focusing metrics, a thorough literature study was 
performed. The first draft of a report on different 
focusing algorithms suitable for cell nuclei 

microscopy imaging has been completed. Based 
on the report, a pilot study has been carried out. 
In the study, five of the most promising focusing 
algorithms were implemented and tested on 
sets of microscopy images where for the same 
sample, the focus had been varied in a controlled 
way for a large number of possible focus depths. 
The preliminary results show that several of the 
metrics performed well, i.e., identified a focus 
depth that co-aligned with the one picked by a 
trained user, but that the Energy of Laplacian 
might be the most promising one. To continue 
this study, new data needed to be recorded. 

Finding the optimal focus of each scans has proven to be a challenge.
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SCANNED SLIDES

In DoMore!, images from more than 60,000 slides 
are scanned. Ideally, all of these images are of high 
quality having high contrast and a perfect focus, as 
these images form the foundation of further analysis. 
Based on the knowledge gained in Task 5.1 we wanted 
to develop a tool to monitor the image quality. The 
scanner produces an image, and the task was to 
determine if this image was unfocused. A trained 
human can reliably establish this in a couple of 
seconds. Having a computer program doing the same 
is more challenging.

A larger dataset was collected to evaluate various 
metrics and ideas. It consisted of pairs of 90 scans 
collected on three different scanners. Each pair 
consisted of an unfocused scan (detected manually), 
and the same scan rescanned and controlled to 
have an acceptable focus quality. From each scanner 
(Aperio, Hamamatsu XR and Hamamatsu NZ), ten 
scans from three different tumor type (prostate, 
colorectal and lung) were collected. The scans were 
manually annotated to identify areas of different 
tissue type (tumor, connective/muscle/fatty tissue, 
necrotic areas). The annotation was performed with 
up to 20 times zoom level.

The current status of the project is that, so far, no 
metric is found that can separate all incidences of 
focused from unfocused images. Our priority now 
is on understanding and mimicking how a human 
distinguishes a focused from an unfocused image.

The wanted outcome of this project is an algorithm 
that determines if a given scan is of a quality good 
enough to be included in the following analysis, or 
if the slide should be rescanned or removed from the 
analysis. The algorithm should work for both full scans 
and for tiles, and ideally be independent of scanner 
and tissue type. We have a good indication that it is 
possible to establish such an algorithm for a given 
scanner and tissue type. If it will be independent of 
scanner and tissue type, remains to be proven.

In the following, we will continue working on a global 
algorithm for scanned slides. When this is e sta blished, 
we will return to microscopy images and take up again 
our project on auto-focusing algorithms. We will 
then investigate the relationship between focusing 
measures and texture features.

Another important task will be to closely examine all 
the other parameters that influence image quality 
with the goal to reduce the coefficient of variation 
of integrated optical density meassured in scanner 
images, which is 1.5 times higher than for microscope 
images.

This work package will be assigned more resources 
in 2019 - 2020, as they are becoming available after 
completing tasks in other work packages.
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WP6 
COMMERCIALI-
SATION, 

HEALTH 
ECONOMY 
AND PROGNOSTIC 

DECISION 
SUPPORT
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As the development activities of DoMore! has 
progressed and the potential products have 

advanced in the pipeline, the activities connected 
to the commercialisation of the projects inventions 
started during autumn 2018. 
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The main goal for the first phase has been to outline 
the general strategies for the transfer of technology, 
rights, and knowhow to a commercial company as 
well as the principles of ownership of such a company 
and the revenue streams back to the stakeholders. 

OVERALL STRATEGIC COMMER-
CIALISATION GOAL
DoMore!s commercialisation strategy is included 
in the project’s overall strategy. We believe it will 
add its value to the project, making it more than a 
passive owner and seller of IP rights and software 
components. The base of this strategy is the 
understanding that in silico pathology rests on the 
foundation of digital pathology. A “passive” strategy 
is more vulnerable to the dynamics of the industry, 
such as a slow distribution of digital pathology. 
Therefore, a viable strategy includes options for wider 
involvement in the pathology value chains. Although 
the business strategy is at a very early stage, it is vital 
that the commercial setup is designed to facilitate 
this.

PRODUCTS AND SERVICES
A range of artificial intelligence products 
resulting from the research and development has 
been identified through the commercialisation 
discussions so far. The products that are already in 
the pipeline can be roughly divided into three main 
groups:

• Pathology workflow optimization

• Prognostic markers

• Screening tools

These three types of products fit in different 
parts of the value chain of the industry and are 
thus believed to require different commercial 

approaches. For some of the products, simple license 
agreements with hardware vendors may be the 
optimal commercialisation strategy, whereas for 
others the optimal strategy for the stock owners 
may be to develop services or enter into strategic 
collaborations with existing service providers. Also, 
planned products within clinical decision support, 
which is not yet in the pipeline, may require yet 
another commercialisation strategy.

TRANSFER MODEL
The strategy for IP-transfer assumes the creation of 
a limited company (AS =aksjeselskap in Norwegian) 
that acquires the necessary technology, rights/
licenses and know-how from the project. The 
transfer model (to the right) illustrates the flow of 
IP and money from the DoMore! -project to the new 
company, which for this strategy is named DoMore! 
Assays AS. In the process of setting up the company, 
the project is represented by the TTO (Technology 
Transfer Organisation), which in this project is Oslo 
Cancer Cluster, while the yet empty company is 
represented and set up by Radforsk.

PATENTS
DoMore scientists have developed machine learning 
algorithm trained on some scanner images. Each 
image is divided into tiles which are then used to train 
the deep learning algorithm. The trained algorithm 
may then be used to evaluate images.  

A UK patent application covering the methodology 
described above was filed in the UK on November 
16, 2017. A PCT application was filed on November 
9, 2018.
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INITIAL FUNDING OF THE 
COMMERCIAL COMPANY
Radforsk and OCC will, on behalf of the parties 
negotiate the commercial terms, i.e., license/royalty 
agreements for the first products. OCC as TTO will 
develop an investment memorandum, describing 
the investment opportunity. Many business ideas 
and concepts based on the developed products have 
been outlined during the work package activities, 
which will be described in the memorandum. The 
company will be based on this, secure funding for the 
first part of the commercialisation through a private 
placement, facilitated by Radforsk. 

THE INITIAL COMPANY SET UP
The main element of the company setup is the search 
for an appointment of CEO which will formally lead 
the commercialisation activities. The primary task 
for the CEO will be to develop a business plan and 
execute this plan to initiate a revenue stream.
The CEO will from the beginning need at least one 
technical resource (developer) to be able to deliver 
the technology to potential customers. He or she 
will also need an advisory board consisting of people 
with deep technical knowledge of the products and 
the potential markets. 

As the first products are seen as ready for 
commercialisation now, the goal for the CEO should 
be to be able to show a cash stream during the second 
year of operation.

Institutions
33,33%

OCC
33,33%

Investors
 33,33% to be shared

rights

X% of $ 
DoMore!
Academic

IndustryDoMore! Assays ASTTO
rights

$ 

TRANSFER MODEL



48

CLINICAL DECISION  SUPPORT SYSTEM IN 

COLLABORATION WITH DIPS ASA

As a partner in DoMore! and as a provider of Electronic 
Patient Journal (EPJ) to the majority of Norwegian 
hospitals, DIPS is committed to developing an 
integrated Clinical Decision Support System. 
The team has started a process based on different 
deep learning systems to analyze and score 
prognostic information from DoMore!. The result will 
be integrated with scores from radiology imaging and 
clinical information.

A TEST LAB
DIPS Arena will set up a test lab that allows 
computer scientists from DoMore! and DIPS to work 
in collaboration. The collaboration structures have 
been designed Q4 in 2018 and the emphasis in the 
first phase, Q1, and Q2 of 2019 will be on technology 
integration. The last year of the DoMore! project will 
be geared towards testing and presentation of findings 
in a clinical dashboard- solution - the WP.

High risk Low risk

Stage 1 Stage 2 Stage 3 Stage 4 Death

R1 Comparator(s)
  Unit costs of all tests
  Resources required
  Measurement of 

  Health outcomes

Q1

in-silico pathology compared with the 
current practice in CRC?

R2 Comparator(s)
  Unit costs of all tests
  Resources required
  Measurement of 

  Health outcomes

Q2 Will the use of Nucleotyping
 change in the treatment pathway 
among stage II CRC patients? Q3 What can in-silico pathology 

contribute to the current practice?

Q4 Can silico pathology result in cost 
savings in the Norwegian National 
Health Service if introduced?

R4 Comparator(s)
  Unit costs of all tests
  Resources required,
  incl. setup costs

  Personnel data

Summary of key questions/areas for discussion
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HEALTH ECONOMICS
There is limited literature on Health economics and 
cancer biomarkers. This is because it is challenging to 
conduct a periodic review of evidence and update of 
existing clinical guidance based on the best evidence. 
For example, the drugs Cetuximab and Panitumumab 
that use companion diagnostics have been evolved 
through further refinement of technologies leading 
to the identification of subgroups who would be 
benefitted from the technologies of interest (NICE, 
2017).

Contrary to the rising expectations, there has been 
less enthusiasm about the research and development 
of biomarkers and personalized medicines in 
relation to the return of investments (ROI) for 
technology developers and the budget impact for 
healthcare payers. It is because the assessment of the 
pharmaceutical and companion diagnostic package 
can be undertaken in much the same way as for 
pharmaceuticals without companion diagnostics. 
However, in circumstances where alternative tests 
are available, for example, proprietary test kits or “in-
house tests” for the same biomarker that would fulfil 
the requirements of the pharmaceutical marketing 
authorization, the amount of extra effort to fully 
evaluate these alternative options is likely to exceed 
the available resources and timeframe in technology 
appraisals (NICE 2013).

Defining the decision problem is the first step to be 
taken for the health economic evidence directly related 
to diagnostic biomarkers (Payne 2014; NICE 2011). 
This has been the main task so far. The following steps 
are to conceptualize the model: Select the relevant 
decision analytic model, build the decision analytic 
model, collect data to populate the decision analytic 
model, calculate expected costs and consequences, 
identify uncertainty and present the results. 

The complete process is rather resource intensive. 
Based on the current evidence base of DoMore! 
project, Nucleotyping or Histotyping could be seen as 
one of two potential areas for the scoping (decision 
problems); “Q2 clinical and cost-effectiveness of 
Nucleotyping or Histotyping among stage II CRC 
patients for adjuvant therapy” (previous figure). The 
availability of good quality data to populate a Health 
Economics analysis.
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Test and validation studies, scientific publications 
and dissemination are all included and  a strategic 

part of the DoMore! project.
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VALIDATION

When working with machine learning and deep 
learning, a proper predefined experimental design is 
crucial to ensure reliable results that are replicable 
in other labs. The experimental design for most of our 
projects is based on three main steps; learning, testing 
and validation, where each step usually employ 
independent data. Independence is of particular 
importance in the final validation studies. Ideally, 
these should be performed in an external lab, but this 
is in most cases not practically possible, and there are 
unfortunately very few replication studies published 
in science.

The Histotyping method (WP2) has been tested on 
a dataset produced externally, to ensure that the 
method is invariant to technical artefacts from 
the preparation of images. We have used multiple 
scanners to ensure invariance to technical artefacts in 
any given scanner. The final validation of Histotyping 
in colorectal cancers will be performed on tissue 
sections from more than 1000 patients with either 
stage II or stage III disease from a well described 
international clinical trial (Quasar 2). 

For the methods developed in WP3, tumour 
delineation and nuclear segmentation, a design 
with an independent validation study is challenging 
because an objective ground truth is not available. 
It is in practice only possible to objectively assess 
to what extent the automatic segmentation equals 
the subjective segmentation defined by trained 
personnel. The final validation of each method in 
WP3 will therefore be empirically based on the 
validation studies where the methods are used, i.e., if 
Histotyping is successfully validated, so is the tumour 
delineation, as it was used to define the tumour areas 
to be analysed in Histotyping.

In WP4 we have several very different methods and 
employ slightly different experimental designs, but 
again use the three-step setup learning-testing-
validation. For ploidy/stroma and Nucleotyping, the 
validation is explained and discussed in detail in the 
published papers (see next page).

The automated Gleason grading method, which is 
based on the established grading system developed 
by Gleason, is evaluated by comparing with results 
from several specialised uropathologists. The main 
challenge here is that there is a relatively high inter-
observer variation. Our method do very well when we 
compare to those cases where the pathologists are in 
agreement, but one would have to argue that those 
cases might be the easier ones to grade. The final 
validation study will therefore be based on the actual 
outcome of the patients in a new cohort. The challenge 
in doing so is partly the tumour heterogeneity and 
partly that the clinical outcome of a prostate cancer 
patient is not known until 10-15 years after treatment. 
The validation cohort for this project is yet not defined.

For mitotic index, we have used a public material 
for learning, and the trained model has been 
independently tested in a cohort of uterine sarcomas, 
where we also have manual mitotic counting for 
comparison. The test is however on the outcome of the 
patient. We are currently seeking an external material 
for the final validation, which might be a breast cancer 
cohort, as this is a cancer type where mitotic index is 
already implemented in clinical routine.
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SCIENTIFIC PUBLICATIONS

We have so far published 9 papers from the DoMore! 
project and another 8 related papers are published by 
DoMore! partners during these first half of the project. 
Our studies have been well received by biomedical 
journals with a mean impact of 12.4, which we find 
very satisfactory. 

A further 5 manuscripts have recently been submitted 
for publication.
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DISSEMINATION

The overall strategic goal for DoMore!’s communication 
has been to increase awareness about AI among both 
professionals as the general public. 

Through active promotion efforts towards journalists 
and editors in the top Norwegian newsrooms, the unit 
has reached some of the country’s most important 
media. The results are among others a front-page 
report and a corresponding TV feature in VG, two 
front-page reports in Norwegian daily newspaper 
Dagbladet, a story on the Norwegian public 
broadcaster NRK’s website, and a mentioning on the 
cover of Aftenposten’s weekly A-Magasinet.

RAISING THE LEVEL OF PUBLIC 
KNOWLEDGE
The amount of interest we have seen so far indicates 
that we have been successful with our strategic 
communication goals. More than close to 40 
presentations and more 50 news reports in national 
and international media over the past two and a half 
years have helped to position DoMore! at the public 
forefront of Norwegian AI-based cancer research. 

ICGI’s Unit for dissemination and visualization 
provides the communication strategy. The team of 

communicators consists of a designer, a 3D designer, a 
web developer, and a writer and are contributing to the 
dissemination of DoMore! through various platforms 
and media channels. In addition to the website, we 
have so far shared popularizations of our research on 
the Institute’s YouTube channel with close to 45,000 
subscribers, on Facebook, Twitter and more recently 
also on Instagram.

MEDIA MONITORING
To increase the efficiency of the outreach efforts, have 
we used press release tools such as the publication 
site Mynewsdesk and the media monitoring service 
Meltwater.

In the next years, we will continue to emphasize 
national and international media outreach, in addition 
to maintaining the activities we have described. 
Simultaneously, we will continue working towards 
increasing interest among national and international 
academic communities. We will also continue the 
work to establish and level an understanding for 
DoMore! in our own the hospital organisation, with 
future implementation in mind.

In the beginning of February 2019 the Norwegian 
government launched the startup to develop a National 
strategy for using Artifi cial Intelligence (AI). The 
announcement was made during a visit to the Institute 
for Cancer Genetics and Informatics, where parts of the 
DoMore! project were presented. The visit included a tour 
of our laboratories as well as a presentation of how AI 
can be used in cancer prognostics. The left-most image 

shows, (from left, at back): Project leader, Håvard E. Greger 
Danielsen, Cathrine Lofthus, Director South-Eastern 
Norway Regional Health Authority , Sigbjørn Smeland, 
Head of the Cancer Clinic, Oslo University hospital, Erna 
Solberg, Prime Minister, Nikolai Astrup, Digitisation 
Minister. Bioengineer Maria Isaksen (left image), Post.doc. 
Manohar Pradhan (center image) and System developer/
Post.doc, Sepp de Raedt demonstrated their work.
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The DoMore! project was in 2016 selected as one of the Norwegian Research Council’s Lighthouse projects 

to solve large societal challenges using cutting-edge technology. The DoMore! project will run until 2021, 

led by the Institute for Cancer Genetics and Informatics (ICGI) at Oslo University Hospital.
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