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Abstract

Endometrial stromal sarcomas (ESS) are a heterogeneous group of rare mesenchymal

cancers. Considerable knowledge has been gained in recent years about the molecu-

lar characteristics of these cancers, which helps to classify them in a more meaningful

manner leading to improved diagnosis, prognostication, and treatment. According to

this classification, ESS is now grouped as low- or high-grade. ESS may have over-

lapping clinical presentation, morphology, and immunohistochemical profile. Their

genetic characteristics allow subdivision of many of them depending on which

pathogenetically important fusion genes they carry, but clearly much more needs to

be unraveled in this regard. We here provide an overview of the molecular pathoge-

netic knowledge gained so far on low- and high-grade ESS.
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1 | INTRODUCTION

According to the latest World Health Organization (WHO) classi-

fication of tumors, Endometrial Stromal Sarcomas (ESS)

belongs to the overall category of Endometrial Stromal and

related Tumors (EST). The spectrum runs from the completely

benign, that is endometrial stromal nodules (ESN) showing

well-circumscribed margins with cells resembling those of

proliferative-phase endometrial stroma, to malignant, high-grade

ESS (HG-ESS), which show destructive growth with invasion of

surrounding myometrium, to the highly aggressive, undifferentiated

uterine sarcomas (UUS) showing high-grade cytological features, but

no specific type of differentiation. Thus, ESS are malignant tumors

composed of cells resembling stromal cells of proliferative-phase

endometrium, with a tendency toward infiltrative growth into the

myometrium and/or lymphovascular spaces. The HG variants show

round cell morphology that may be associated with a low-grade

spindle cell component, which is frequently fibromyxoid.1 Though

most of these tumors originate from the uterus, a subset arises in

extrauterine locations, such as, the ovary or peritoneum, often in

association with endometriosis.2,3

ESS are rare, accounting for 7% to 25% of all uterine mesenchymal

tumors or 1% of all malignancies arising in the uterus. They are the sec-

ond most common uterine malignant mesenchymal tumors after

leiomyosarcoma.1,2 The morphologic features, clinical behavior, and

genetic aberration pattern identified in ESS allowed for separation into

two categories: high and low grade. However, the complexity and het-

erogeneity of these tumors extend far beyond this diagnostic grouping.

2 | CHROMOSOMAL ABERRATIONS AND
THEIR MOLECULAR PRODUCTS

Different types of chromosomal aberrations have been described in

ESS, with the most common being translocations involving two differ-

ent chromosomes. Regardless of whether the translocation is
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balanced or unbalanced, the molecular product of such

rearrangements is usually a so-called fusion gene. This is a hybrid

formed from two previously independent genes. It has been known

for more than 30 years that gene fusions play an important role in

tumorigenesis.4,5 Oncogenic fusions may lead to an abnormal gene

product brought about by fusing elements from the two fusion part-

ners. Alternatively, a proto-oncogene may be fused to a strong pro-

moter leading to its upregulation. Oncogenic fusion transcripts may

also be caused by trans-splicing or read-through events. Identification

of an activated fusion gene improves diagnostic precision as well as

prognostication, while at the same time providing pathogenetic infor-

mation about the tumor.6

Though different fusion genes have been identified in ESS, gener-

ally it seems that the presence of one fusion gene excludes the pres-

ence of another in the same tumor.

2.1 | LG-ESS

Since 1988, when the first cytogenetic abnormalities were reported in

ESS,7 many characteristic chromosomal rearrangements have been

described in this group of tumors. The most distinctive cytogenetic hall-

mark of LG-ESS is the 7;17-translocation (Figure 1), first described by

Sreekantaiah et al in 1991.8 The aberration leads at the molecular level to

fusion of two zinc finger genes, JAZF1 (from 7p15) and SUZ12 (previously

known as JJAZ1; from 17q21; Figure 1).9 Many other chromosomal

changes have also been described and their pattern of occurrence is

clearly nonrandom (Table 1). The molecular product behind each translo-

cation has been identified for most of them. Ever improving methodologi-

cal tools have facilitated the discoveries, especially the introduction of

deep sequencing technologies allowing rapid screening of tumor genomes

and transcriptomes.10 The second most common rearrangement involves

chromosome band 6p21 and the PHF1 gene.11 PHF1may recombine with

several partners, not least JAZF1 trough an unbalanced 6;7-transloca-

tion.11 Other partners are EPC1 through a 6;10-rearrangement11; MEAF6

through a t(1;6)(p34;p21)12; BRD8 via t(5;6)(q31;p21)13; EPC2 through a

2;6-rearrangement14; and recently a MBTD1/PHF1 was also reported.15 A

study by D'Angelo et al.16 showed that tumors bearing PHF1 fusions,

independently of which partner gene is involved, typically present sex

cord-like differentiation, leading the authors to suggest that

rearrangements of this gene preferentially induce such differentiation.

A less frequent chromosomal rearrangement is the t(X;17)(p11;

q21) leading to the MBTD1/EZHIP (previously known as CXorf67)

fusion.17 Variants of the JAZF1/SUZ12 were recently identified in

which JAZF1 recombines with BCORL118 and SUZ12 with MEAF6.19

Another two novel chimeric fusions were reported by Dickson

et al.,20 EPC1/SUZ12 and EPC1/BCOR. The identification of these

transcripts underlines the promiscuous nature of EPC1, but also

obfuscates the molecular distinction between high grade and low

grade ESS. Both tumors were described as clinically aggressive and

with morphological features compatible with HG-ESS.20 The biological

potential associated with these fusions remains to be fully character-

ized. Most likely, also other fusion gene products will emerge. Until a

sufficient number of cases is studied and the clinical parameters corre-

lated, it is likely to remain challenging to classify the observed molecu-

lar events as being fully specific for LG- or HG-ESS.

The above-mentioned fusion genes have so far not been seen in

leiomyomas, leiomyosarcomas, and uterine tumor resembling ovarian

sex cord stromal tumors (UTROSCT), all of which may on occasion be

differential diagnoses. Nevertheless, none of the fusions is fully

pathognomonic for LG-ESS as they have all been found also in other

neoplasias. JAZF1/SUZ12 fusion is detected in 65% to 75% of

ESN.9,21-27 This chimera has been found more frequently in classic

LG-ESS than in LG-ESS exhibiting variant features.28 Recently, an ESN

with MEAF6/PHF1 was reported, providing further support for a con-

tinuum between these two tumor entities.29 Interestingly, the ESN

F IGURE 1 Partial karyogram and chromatogram of the hallmarks for ESS. A, LG-ESS: partial karyogram showing the t(7;17)(p15;q11) (left),
the ideograms for the rearranged chomosomes (center), and sequence chromatogram for the JAZF1/SUZ12 fusion gene (right). B, HG-ESS: partial
karyogram showing the t(10;17)(q22;p13) (left), the ideograms for the rearranged chomosomes (center), and the sequence chromatogram for the
YWHAE/NUTM2A/B fusion gene (right). Arrows point at breakpoints
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showed focal peripheral ossification, a rare feature of ESN and/or LG-

ESS but a hallmark of ossifying fibromyxoid tumors with which they

may share also other molecular events such as PHF1 fusions, that is,

EP400/PHF1, MEAF6/PHF1, and EPC1/PHF1. It was therefore hypoth-

esized that the MEAF6/PHF1 could be associated with metaplastic

bone formation.30 The aforementioned fusions occur in ossifying

fibromyxoid tumors of soft parts, irrespective of whether the tumor is

diagnosed as typical, atypical, or malignant, whereas JAZF1/PHF1 has

been found in cardiac ossifying sarcomas.31-34 Furthermore, two novel

fusions, CREBBP/BCORL1 and KDM2A/WWTR1 have been reported in

ossifying fibromyxoid tumors35 showing additional overlap with LG-

ESS as the genes CREBBP and KDM2B were previously found in a chi-

mera in the latter tumor as well.36 Recently, the JAZF1/BCORL1 fusion

was identified in an adenosarcoma arising in the uterus.37

2.2 | HG-ESS

The cytogenetic hallmark of HG-ESS is the balanced t(10;17)(q22;p13)

translocation simultaneously reported in 2003 by two groups38,39

(Figure 1). The gene product it leads to was identified by Lee et al.40

as an in-frame fusion between the YWHAE and NUTM2A/B genes

(previously known as FAM22A/B; Figure 1). The fusion seems to be

specific for HG-ESS as it was never identified in other gynecological

tumors or neoplastic lesions, such as, uterine adenosarcomas, carcino-

sarcomas, leiomyosarcomas, leiomyomas, and polypoid endometri-

osis.40 Kubo et al.41 reported a low frequency of YWHAE and

NUTM2A/B rearrangements in epithelioid leiomyosarcoma; admit-

tedly, the immunostaining data of that study were suggestive of an

unusual ESS. Splitting of probes for the YWHAE, FAM22A, and

FAM22B genes has been reported in a uterine angiosarcoma.42

Despite the fact that no fusion transcript involving the mentioned

genes was discovered, the authors suggested that abnormalities of

them may contribute to development of uterine angiosarcoma in

much the same manner as they do in ESS.42 Of further note in the

context is the fact that no such rearrangement was identified in

21 angiosarcomas of extrauterine soft tissue.40 However, the very

same chromosomal translocation has been reported in clear cell sarco-

mas of the kidney by different groups43-45 and shown to correspond

to a YWHAE/NUTM2A/B fusion.46 Kao et al.47 identified it also in

small round blue cell sarcomas of soft tissue, undifferentiated round

cell sarcoma, and primitive myxoid mesenchymal tumor of

infancy.47,48 Recently, the first neonatal case of a round cell sarcoma

bearing this chimera was described in a tumor with aggressive clinical

behavior.49 Sciallis et al.50 studied 17 HG-ESS and outlined three mor-

phological patterns in this tumor type: YWHAE rearrangements were

identified only in tumors showing high-grade round cells with brisk

mitotic activity and necrosis, not in all examined tumors.

A subset of tumors within the HG-ESS category has lately been

described as having aggressive behavior and mimicking myxoid

leiomyosarcoma morphologically. These tumors show the ZC3H7B/

BCOR fusion first reported by Panagopoulos et al.51 in two ESS show-

ing a (X;22)(p11;q13) chromosomal translocation, a rearrangement

later confirmed in several tumors by other investigators.52-55 Most of

TABLE 1 Overview of chromosomal rearrangements and their respective fusion genes detected in low-grade and high-grade endometrial
stromal sarcomas, and their occurrence in other types of neoplasms

ESS type Chromosomal rearrangement Fusion transcript and/or molecular aberration Other neoplasma

Low-grade t(7;17)(p15;q11) JAZF1/SUZ12 ESN

Low-grade t(6;7)(p21;p15) JAZF1/PHF1 cardiac ossifying sarcoma

Low-grade t(6;10)(p21;p11) EPC1/PHF1 OFM

Low-grade t(1;6)(p34;p21) MEAF6/PHF1 ESN, OFM

Low-grade t(X;17)(p11; q21) MBTD1/EZHIP

Low-grade t(5;6)(q13;p21) BRD8/PHF1

Low-grade ins(6;2)(p21;q23q23) EPC2/PHF1

Low-grade t(6;17)(p21;q21) putativeb MBTD1/PHF1

Low-grade t(X;7)(q26;p15) putative JAZF1/BCORL1 adenosarcoma

Low-grade t(1;17)(p34;q11) putative MEAF6/SUZ12

Low-grade t(10;17)(p11;q11) putative EPC1/SUZ12

Low-grade t(X;10)(p11;p11) putative EPC1/BCOR

High-grade t(10;17)(q22;p13) YWHAE/NUTM2A/B LMS, angiosarcoma, CCSK, SRBCS, URCS, PMMTI,

NRCS,

High-grade t(X;22)(p11; q13) ZC3H7B/BCOR OFM

High-grade t(X;3)(p11;q28) putative LPP/BCOR

High-grade BCOR ITD CCSK, PMMTI, RCS

aCCSK, clear cell sarcoma of the kidney; ESN, endometrial stromal nodule; OFM, ossifying fibromyxoid tumor; LMS, leiomyosarcoma; NRCS, neonatal

round cell sarcoma; PMMTI, primitive myxoid mesenchymal tumor of infancy; RCS, round cell sarcoma; SRBCS, small round blue cell sarcoma; URCS,

undifferentiated round cell sarcoma.
bPutative, the fusion was found by sequencing analysis and the chromosomal rearrangement designed by default.
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the clinical data published on patients diagnosed with HG-ESS

showed stage 3 disease or the patient had a recurrence. However,

ESS harboring a ZC3H7B/BCOR fusion may be clinically as well as

morphologically heterogeneous.54-56 A unique case of ZC3H7B/

BCOR-positive HG-ESS was identified at an early stage when an endo-

cervical polypoid mass from the lower uterine segment was exam-

ined.56 Though macroscopically the tumor presented as a polypoid

mass descending into the cervical canal in a myoma nascens-like fash-

ion, the histomorphologic and immunohistochemical profiles were

suggestive of HG-ESS.

Recently, additional variant partners for BCOR-fusions, including

L3MBTI2, EP300, NUTM2G, RALGPS1, MAP7D2, RGAG1, ING3,

NUGGC, KMT2D, and CREBBP, were identified in a series of 40 uterine

sarcomas.57 However, until a sufficient number of tumors showing

these fusions are collected and their clinical-pathological parameters

examined in detail and reported, it is difficult to correlate meaningfully

the genetic and morphologic features.

In addition to fusion genes, other types of molecular aberrations

have also been found in HG-ESS. Chiang et al.52 reported the first HG-

ESS with BCOR internal tandem duplication (ITD), the same aberration

previously found in clear cell sarcoma of the kidney (CCSK)58,59 and

primitive myxoid mesenchymal tumor of infancy.60 This adds to the

growing body of histologic, immunophenotypic, and genetic evidence

unifying these tumors pathogenetically with CCSK as well as soft tissue

round cell sarcomas.47,52,59 The latter tumor type also shows alternative

gene fusions involving BCOR, such as, BCOR/CCNB3, BCOR/MAML3, and

KMT2D/BCOR.60,61 BCOR gene aberrations have further been found in a

tumor of the sinonasal cavity (a sarcoma) and in pediatric glioma,

resulting in CIITA/BCOR and EP300/BCOR fusion, respectively.62,63 Trun-

cating mutations or gene deletions occurring in BCOR have also been

identified in acute myeloid leukemia, retinoblastoma, diffuse glioma, and

medulloblastoma.64-66 The detection of aberrations of this gene already

plays a key role in the diagnosis of some malignancies, for example, high-

grade neuroepithelial tumor of the central nervous system with BCOR

gene alteration.67 BCOR ITD has been reported in a limited number of

HG-ESS; however, this aberration seems to characterize a younger group

of patients and be associated with a slightly more favorable clinical

course.68 The identification of the same BCOR genetic aberrations in so

many different tumor types suggests a central pathogenetic role of this

gene. In all likelihood, the type of stem cell hit by the tumorigenic event,

the differentiation pattern it is already locked onto, decides the pheno-

typic differences observed.

The gene's orientation in the different chimeric fusions is intrigu-

ing, whether it is 30 or 50. Furthermore, some but not all ZC3H7B/

BCOR positive HG-ESS are characterized by the presence of also the

reciprocal transcript51,52,56 whose role in tumorigenesis and/or pro-

gression is still unknown. Additionally, a new BCOR-rearranged HG-

ESS was recently reported by Kommoss et al.69 in which RNAseq

identified a fusion between BCOR and LPP. The genic event behind

the transcript resulted in overexpression of the C-terminal, truncated

BCOR protein but without generation of the chimera, that is, no cod-

ing part of LPP was involved. The functional consequences of this

aberration are unclear.

BCOR immunochemical staining has proved to be a highly sensi-

tive marker for HG-ESS bearing YWHAE/NUTM2 and YWHAE-

rearrangements, be it with classical or unusual morphology; it was

found positive in half of the tumors showing BCOR-rearrangements as

well as in tumors showing BCOR ITD.47,52 Overexpression of BCOR

mRNA has been described in tumors with YWHAE/NUTM2 fusions.48

BCOR immunohistochemistry can be used diagnostically to separate

all the above-mentioned tumors (with BCOR genetic rearrangement)

from their histological mimics.

As for the LG-ESS, genetic aberrations found in HG-ESS have

been found also in other tumor types. Of particular interest are the

data reported by Cotzia et al.70 who detected rearrangements of

YWHAE, BCOR, and PHF1 in a series of tumors previously classified as

UUS based on morphologic and immunohistochemical features. Con-

sequently and logically, the authors suggested that many UUS may

represent misdiagnosed HG-ESS.70 Stewart et al.71 identified a

YWHAE deletion in a vagina wall metastasis from a monomorphic

undifferentiated sarcoma, as the tumor was classified at that time.

Also, two tumors with morphologic feature of LG-ESS have had

YWHAE rearrangements: a YWHAE/NUTM2A fusion was identified in

a tumor confined within the endometrium,72 whereas deletion of a 30

probe for YWHAE was shown in an LG-ESS and in its recurrence in a

case showing progression from LG- to HG-ESS.73 Antonescu et al.31

identified ZC3H7B/BCOR in ossifying fibromyxoid tumors showing

molecular overlap with ESS.

ESS showing both LG- and HG-features are rare, as are tumors

initially diagnosed as LG- but then developing metastatic HG-

ESS.50,74-76 These tumors harbor gene fusions that are typically asso-

ciated with LG-ESS.77

The identification so far of four chimeric transcripts in HG-ESS—

YWHAE/NUTM2A/B, ZC3H7B/BCOR, EPC1/SUZ12, and EPC1/BCOR-

is evidence of genetic heterogeneity also within this tumor subgroup.

As highlighted above, EPC1 is involved in LG-ESS-related fusions. The

molecular heterogeneity even within specific pathologic entities, that

is, LG- and HG-ESS, as well as the fact that different entities may

show the same fusion, makes the diagnosis of these tumors challeng-

ing. Some tumors may exhibit morphologic aspects of a specific entity

without having any known molecular signature of it, or they show

sex-cord differentiation and/or myxoid morphology reflecting pheno-

typic overlapping among subgroups. A tumor classification that com-

bines both morphologic and genetic tumor features is necessary to

improve diagnostic precision as well as prognostication, while simulta-

neously providing pathogenetic information about the neoplastic

process.

3 | PATHOGENETIC CONSEQUENCES OF
ESS-SPECIFIC GENETIC REARRANGEMENTS

In later years, much effort has gone into the identification of molecu-

lar mechanisms behind ESS-specific genetic rearrangements with the

goal of unraveling how they contribute to tumorigenesis and, eventu-

ally, how this knowledge can lead to novel therapeutic approaches. A

MICCI ET AL. 163



striking general feature of the molecular genetics of ESS is that many

of the genes involved in chromosomal rearrangements are associated

with chromatin modification, that is, JAZF1/SUZ12, JAZF1/PHF1,

EPC1/PHF1, MEAF6/PHF1, MBTD1/EZHIP, BRD8/PHF1, EPC2/PHF1,

MBTD1/PHF1, JAZF1/BCORL1, MEAF6/SUZ12, EPC1/SUZ12, EPC1/

BCOR, and ZC3H7B/BCOR.

LG-ESS harbor chromosomal rearrangements of genes, such as,

SUZ12, PHF1, EZHIP, MBTD1, EPC1, and EPC2 (the latter is a paralog)

whose protein products are associated with chromatin remodeling

complexes, the NuA4 acetyltransferase complex and the Polycomb

group of Protein (PcG; mainly the Polycomb Repressive Complex

2 subunits). It was recently demonstrated that the 50 partner gene of

the fusion codes for a component of the NuA4 acetyltransferase (N-

terminal on the chimeric protein) whereas the 30 gene codes for a

PcG subunit (C-terminal on the chimeric protein).78,79 The JAZF1/

SUZ12 chimera was first demonstrated to inhibit apoptosis and

induce proliferation rates above normal in both benign and malig-

nant uterine tumors, although only in the malignant form was sup-

pression of the wild type/unrearranged SUZ12 allele identified. This

led to the hypothesis that genetic progression from a benign precur-

sor to sarcoma lay behind the suppression of the unrearranged

SUZ12 allele, starting with increased cell survival but followed by

accelerated cellular proliferation upon exclusion of the second

allele.80 A similar mechanism was seen for ESS bearing JAZF1/PHF1

fusion with simultaneous silencing of the normal PHF1 allele.80 The

JAZF1/SUZ12 protein has been shown to be an essential compo-

nent of the Polycomb Repressive Complex 2 (PRC2), a major player

in epigenetic silencing responsible for methylation of lysines 9 and

27 of histone 3 (H3K9 and H3K27). JAZF1/SUZ12 destabilizes the

PRC2 components leading to a decrease of methyltransferase activ-

ity, especially on H3K27, and therefore activates chromatin and/or

genes normally repressed by PRC2.81 Analyses of the gene expres-

sion profiles of LG-ESS have shown overexpression of genes directly

regulated by SUZ12 and activation of genes implicated in the Wnt

signaling pathway,82 confirming that different chromosomal

rearrangements may lead to similar gene expression profiles.36,82 It

has therefore been suggested that LG-ESS chimeric proteins disrupt

the repressive function of the PRC2 complex; possibly these chi-

meras contribute to overexpression of Wnt ligands with subsequent

activation of the Wnt signaling pathway and formation of an active

β-catenin/Lef1 transcriptional complex.81,82 The latter would also

explain why there is nuclear expression of β-catenin in 60% of LG-

ESS.83-85

BCOR (BCL-6 interacting corepressor, mapping on Xp11) and

BCORL1 (BCL-6 corepressor-like 1), like other genes rearranged in

EST, are transcriptional corepressors. Specifically, BCOR is part of the

PRC complex and promotes transcriptional repression by covalent

modification of histone deacetylases and the polycomb repressive

complex 1.86 BCOR has a number of functions within normal tissue

and its alteration can result in developmental disorders and a variety

of hematologic and solid malignancies.48,58,59,87-90

Lately, methylation profiles for different uterine tumors have

been determined91 showing different methylation clusters correlating

with established diagnostic entities. The data obtained highlighted that

the LG-ESS pattern differed from that of HG-ESS, and that, within the

latter, distinct subgrouping of YWHAE- and BCOR-rearranged tumors

was possible.91 The copy number-profile was investigated by the same

group in a series of uterine tumors that included LG-ESS, HG-ESS,

UTROSCT, uterine leiomyomas, and uterine leiomyosarcomas.69 The

authors identified amplification of the MDM2 gene from chromosomal

band 12q15 only in BCOR-rearranged HG-ESS.69 Previously, a study by

Shoolmeester et al.92 showed MDM2 amplification in an LG-ESS with

JAZF1-rearrangement and in a UUS. Since such amplifications have not

been identified in other mesenchymal uterine tumors, it is intriguing that

Cotzia et al.70 suggested that UUS are unrecognized HG-ESS. The dis-

covery of MDM2 amplification opens up for potential use of targeted

therapy in a subset of HG-ESS.69

Lin et al.57 recently investigated the genomic profile of 40 uterine

sarcomas harboring BCOR alterations. The analyzed tumors were

found to be stable at the microsatellite level; however, some of them

showed homozygous deletion of CDKN2A which codes for an inhibi-

tor of CDK4 and CDKN2B. Furthermore, a similar copy number profile

was identified for the CDK4, MDM2, and FRS2 genes (all located at

12q14.1) in uterine sarcomas bearing BCOR-fusions, but not in tumors

with BCOR ITD. It seems that alteration of CDK4 pathway members

contributes to the pathogenesis of BCOR-rearranged tumors, some-

thing that may have therapeutic implications.57

Histone acetyltransferases (HAT) of the MYST family are

known to be involved in vital cellular processes, such as, gene tran-

scription, detection and repair of DNA damage, and DNA replica-

tion. They carry out a significant proportion of all nuclear

acetylation, and their anomalous activity, or anomalous activity of

complexes associated with them (these enzymes work in multi-

subunit protein complexes), can lead to different anomalies from

cell death to uncontrolled growth, the latter leading to cancer for-

mation.93 There are different HATs in the MYST family, many of

which are known to be involved in different types of cancer, for

example, MOZ and MORF in acute myeloid leukemia.

Of all chimeric proteins associated with ESS, YWHAE/

NUTM2A/B is the only one that does not undergo epigenetic modifi-

cation. The gene for YWHAE (14-3-3 ε) belongs to a broad family of

proteins responsible for mediating signal transduction.40 FAM22A/B

was renamed NUTM2A/B due to its sequence homology with NUT

(NUTM1), which is notable in NUT midline carcinoma.94

The issue whether a linear tumor progression exists among the dif-

ferent EST was investigated by means of array based Comparative Geno-

mic Hybridization (aCGH).95 The fact that no chromosomal aberrations

were common to the ESN, LG-ESS, and UES/UUS investigated led the

authors to conclude that this proposition was unlikely. However, an

increasing number of aberrations were registered from ESN to UES, cor-

relating well with histological grading and worsening clinical behavior.95
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