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Background: Pathological evaluations give the best prognostic markers for prostate cancer patients after radical prostatectomy,
but the observer variance is substantial. These risk assessments should be supported and supplemented by objective methods for
identifying patients at increased risk of recurrence. Markers of epigenetic aberrations have shown promising results in several
cancer types and can be assessed by automatic analysis of chromatin organisation in tumour cell nuclei.

Methods: A consecutive series of 317 prostate cancer patients treated with radical prostatectomy at a national hospital between
1987 and 2005 were followed for a median of 10 years (interquartile range, 7–14). On average three tumour block samples from
each patient were included to account for tumour heterogeneity. We developed a novel marker, termed Nucleotyping, based on
automatic assessment of disordered chromatin organisation, and validated its ability to predict recurrence after radical
prostatectomy.

Results: Nucleotyping predicted recurrence with a hazard ratio (HR) of 3.3 (95% confidence interval (CI), 2.1–5.1). With adjustment
for clinical and pathological characteristics, the HR was 2.5 (95% CI, 1.5–4.1). An updated stratification into three risk groups
significantly improved the concordance with patient outcome compared with a state-of-the-art risk-stratification tool (Po0.001).
The prognostic impact was most evident for the patients who were high-risk by clinical and pathological characteristics and for
patients with Gleason score 7.

Conclusion: A novel assessment of epigenetic aberrations was capable of improving risk stratification after radical prostatectomy.

Among European men, prostate cancer is the most commonly
diagnosed and third most lethal cancer type (Ferlay et al, 2013).
Randomised trials confirm that radical prostatectomy improves
survival, at least for high-risk patients (Bill-Axelson et al, 2011;
Wilt et al, 2012), and that radiation therapy or immediate
hormonal therapy after radical prostatectomy may further reduce
the risk of recurrence and death (Messing et al, 1999; Thompson
et al, 2009). There is thus a need for identifying patients at high
risk of recurrence in order to offer adjuvant treatment.

Clinical characteristics and pathological evaluations can be
applied to estimate the risk of recurrence after radical

prostatectomy. Gleason grading gives the currently best prognostic
marker, but is subjective and has high observer variation (Melia
et al, 2006; Bottke et al, 2013). Current risk-stratification tools
incorporate a range of prognostic markers to obtain accurate
prediction of cancer recurrence and mortality. One externally
validated tool is Cancer of the Prostate Risk Assessment
Postsurgical (CAPRA-S; Cooperberg et al, 2011; Punnen et al,
2014; Tilki et al, 2015), which combines preoperative PSA and
pathological evaluations of Gleason score, surgical margins (SM),
extracapsular extension (ECE), seminal vesicle invasion (SVI) and
lymph node invasion (LNI). Objective methods that confirm and
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supplement the prediction of such tools are desired, but are
challenging to identify due to several properties of prostate cancer,
including tumour heterogeneity and slow growth (Algaba and
Montironi, 2010; Andreoiu and Cheng, 2010).

The aim of this study was to develop and validate a novel
prognostic marker for recurrence after radical prostatectomy that
could supplement current risk stratifications. The marker objec-
tively assessed disordered chromatin organisation by analysing the
texture in images of DNA-specifically stained cell nuclei, and was
thus a measure of epigenetic aberrations. Similar markers have
proven to offer substantial prognostic information for a wide range
of malignancies, including prostate cancer (Jorgensen et al, 1996;
Yogesan et al, 1996; Potter et al, 1999; Veltri et al, 2004; Mohamed
et al, 2009). Unlike the most similar methods, our marker stratifies
on regions defined by the distance to the nuclear periphery, as
some genes and chromosome territories reposition radially
during carcinogenesis (Cremer et al, 2003; Leshner et al, 2016).
In addition, we focus on the smallest cell nuclei and account for
heterogeneity and variations in imaging equipment. The marker,
termed Nucleotyping, was integrated with CAPRA-S for improved
risk stratification.

PATIENTS AND METHODS

Patient material. A consecutive series of 317 patients treated with
radical prostatectomy at the Norwegian Radium Hospital during
1987 to 2005 was included in the study. The study was approved by
the Regional Committees for Medical and Health Research Ethics
(REK) in Norway (REK no. S-07443a). A total of 307 patients had
available tumour material and were eligible for analysis. Median
follow-up time was 10 years (interquartile range (IQR), 7–14). The
primary end point was time to recurrence, defined in accordance
with Punt et al (2007), and recurrence was assessed with biopsy,
digital rectal examination or imaging modalities. Pathology of all
study specimens were centrally reviewed by an experienced
uropathologist (LV) who was blinded with respect to patient
outcome, using the 2005 ISUP consensus and the ADASP practice
guidelines (Epstein et al, 2005, 2008).

Tumour block sampling and selection. On average three tumour
block samples (IQR, 3-4) were included for each patient in order to
account for heterogeneity and the entailed sampling challenge. In
DNA ploidy analysis, the patient was considered non-diploid if a
non-diploid tumour block was sampled; otherwise, the patient was
classified as diploid. This is in accordance with the DNA ploidy
study by Pretorius et al (2009), which used a subset of the present
sample and patient cohort. For Nucleotyping, we correspondingly
represented the patient by the tumour block sample most
indicative of recurrence (see Supplementary Methods).

Image cytometry. Monolayers of isolated cell nuclei stained with
Feulgen-Schiff were prepared from formalin-fixed paraffin-
embedded tissue as described by Kristensen et al (2003). Images
of cell nuclei and corresponding DNA contents were measured
with a Zeiss Axioplan microscope equipped with a 546 nm green
filter and a monochrome high-resolution digital camera (AxioCam
MrM, Zeiss, Jena, Germany or C4742-95, Hamamatsu Photonics,
Hamamatsu, Japan) and the Ploidy Work Station Grabber (Room4
Ltd, Crowborough, UK). Each pixel in the resulting images has a
value, called the grey level, which reflects the local DNA density.

The imaged cell nuclei were automatically segmented and
classified according to cell type by computer software. Trained
personnel verified the cell classification and only epithelial cell
nuclei were included for Nucleotyping, resulting in about 1400
nuclear images for each sample (IQR, 1000–1500).

Technical variation. The included samples were prepared over a
10-year period. The microscopy system and sample preparation
technique has been modified to some degree during these years,
resulting in changed pixel resolution and image grey levels. The
studied Nucleotyping method is founded on these attributes of the
nuclear images and it is thus crucial that they are consistent across
all samples in order to avoid occlusion of prognostic information.

In order to compensate for the technical dissimilarities,
we normalised the size and grey levels of the nuclear images based
on automatic detection of diploid cells in each sample, see
Supplementary Methods for details. After normalisation, diploid
cells in all samples had on average the same nuclear size and
estimated amount of DNA.

Nucleotyping. The chromatin organisation in cell nuclei was
automatically analysed by examining the spatial variations in DNA
density within each nucleus. The observed spatial variations gave a
single numerical value for each patient, termed the chromatin
value, which was categorised into a two-group risk assessment of
the patient.

For a given pixel in an image of a DNA-specifically stained cell
nucleus, the spatial variation in DNA density was characterised by
the entropy of the grey levels in the surrounding pixels. Entropy is
a concept originating from thermodynamics, where it is used as a
measure of disorder. In our context, it was applied to quantify the
spatial disorder in DNA density. If the surrounding pixels have
similar DNA densities, then the entropy will be low, while the
entropy will be high in nuclear regions with diverse DNA densities.
It is thus closely related to the organisation of euchromatin and
heterochromatin in the nucleus and can be seen as a descriptor of
either epigenetic phenotype or image texture.

The entropy in a nuclear region was paired with the grey level
value at the region centre. This pair was computed for every pixel
in the nuclear image, and a table was created to store the number
of times each pair occurred; the procedure is illustrated in
Supplementary Figure 1. This table gives the grey level entropy
matrix (GLEM; Yogesan et al, 1996), which has shown diagnostic
and prognostic significance (Jorgensen et al, 1996; Dunn et al,
2011; Nielsen et al, 2012, 2015).

Previous studies on texture analysis have shown that important
diagnostic and prognostic information is found in the proximity of
the nuclear periphery (Young et al, 1986; Nielsen et al, 1999, 2001;
Wei et al, 2011). To include radially dependent information, we
stratified the GLEM computation on each of five consecutive 10%
radial regions of the nuclei (Supplementary Figure 2). Joining
the GLEMs computed for each of these five radial regions resulted
in a three-way table termed the radial GLEM (RGLEM); see
Supplementary Methods for details. This table will describe DNA
content and spatial variations in DNA density near the nuclear
periphery.

Cell nuclei of widely different size have been shown to express
distinct spatial variations in DNA density (Nielsen and Danielsen,
2006). Merging the characteristics of all nuclei may therefore
degrade the prognostic ability, but can be dealt with by stratifying
or selecting nuclei based on their size. Preliminary results led us to
select the small nuclei (o2000 pixels) for this study, or the 1%
smallest nuclei for patients with no small nuclei (only one patient
in the study cohort). Consequently, the RGLEM was calculated for
about 80 (6%) nuclei in each sample (IQR, 29–112).

An established algorithm was applied to obtain a single
numerical value from the RGLEM of each tumour block sample,
and the value most indicative of recurrence was automatically
selected to represent the patient (see Supplementary Methods). The
patient value was categorised into two outcome groups, represent-
ing either the indication of recurrence or the absence of such, using
the conventional minimum Euclidean distance classification
method where the patient is classified to the outcome group with
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most similar mean patient value (Duda et al, 2000). The patient
grouping resulting from this procedure is hereafter referred to as
the Nucleotyping classification. Figure 1 depicts the steps required
to assess the Nucleotyping classification for a new patient.

Training and validating Nucleotyping. Computing the Nucleo-
typing classification requires a patient set because it applies an
adaptive algorithm, that is, an algorithm that is automatically
tuned to a patient cohort. The patients utilised to train a classifier
cannot subsequently be applied to realistically evaluate its
performance (Schulerud et al, 1998; Nielsen et al, 2008). We have
therefore divided the patient material into a learning data set
(n¼ 154) and a validation data set (n¼ 153) by systematically
sampling every other patient after sorting by surgery date. The
Nucleotyping classifier was adapted to the learning set and blindly
applied to the validation set, providing an unbiased estimate
of its predictive accuracy. Only a single classifier was validated,
and thereby the multiple comparisons problem was avoided
(Miller, 1981).

Repeated random sampling was applied to reliably estimate the
expected validation performance of the Nucleotyping classifier
(Michiels et al, 2005). The combined learning and validation set
was randomly divided into new equally sized learning and
validation sets (1000 repetitions). The Nucleotyping classifier was
adapted to each resampled learning set, which is crucial to avoid
overoptimism (Ambroise and McLachlan, 2002; Schulerud and
Albregtsen, 2004), and evaluated in the corresponding, disjoint
validation set.

DNA ploidy analysis. The grey level of a pixel is directly related to
the DNA content at the pixel position. Adding the DNA content
measurements of each nuclear pixel gives the total amount of DNA
in the nucleus. This estimated DNA content of each cell in a
tumour block sample was plotted as a histogram (see
Supplementary Methods for details). Specially trained personnel
classified these histograms as diploid, tetraploid or aneuploid
according to specific criteria, see (Pretorius et al, 2009).

CAPRA-S. The CAPRA-S score is the sum of category points
assigned to PSA, Gleason score, SM, ECE, SVI and LNI, and can
be used directly or grouped at low (score 0–2), intermediate (score
3–5) and high (score 6–12) risk of recurrence (Cooperberg et al,
2011). We integrated the Nucleotyping classification and the exact

CAPRA-S score to obtain a Nucleotyping-pathological-classifier
(NPC); based on the learning set, it was defined as the CAPRA-S
score plus three if Nucleotyping indicated recurrence.

Statistical analyses. Recurrence was used as the end point in
survival analysis, and time to recurrence was calculated from
surgery to recurrence, death or 31 December 2008. The estimated
survival functions were compared using Mantel–Cox’ log-rank test
in univariate analysis of categorical variables and Wald’s w2-test in
univariate analysis of continuous variables and in multivariate
analysis. The proportional hazards assumption was assessed using
Schoenfeld residuals and found acceptable. The model’s ability to
predict patient outcome was measured with the concordance index
by Harrell et al (1982), and the average optimism estimate from
10 000 bootstrapped samples was applied to adjust the concor-
dance index. Difference in concordance index between two models
was assessed by the sign test on the bootstrapped samples. Decision
curve analysis was performed to compare the net benefit of
different models (Vickers and Elkin, 2006). Associations were
evaluated using Pearson’s w2-test and Mann–Whitney’s U-test.
Patients with missing values for at least one included variable were
excluded from the analysis. Statistical significance was defined as
two-sided Po0.05. MATLAB 2012b (The MathWorks, Natick,
MA, USA) was used for Nucleotyping, whereas survival analyses
were carried out in Stata/SE 14.0 (StataCorp, College Station, TX,
USA) and R v.3.1.3 (http://www.r-project.org).

RESULTS

Clinical and pathological characteristics of the studied patient
cohort are summarised in Table 1. Few patients (6%) had low
Gleason scores (p6) and the majority (67%) had the intermediate
Gleason score (7). All CAPRA-S scores were observed, but about
half the patients (49%) were high-risk, by CAPRA-S (score X6).
The vast majority of the analysed small nuclei were of diploid cells
in G0 or G1 phase, but all cell cycle stages and ploidy types were
represented (Supplementary Figure 3).

Nuclear texture analysis near the periphery of the smallest cell
nuclei was significant for the validation cohort in univariate
analysis (P¼ 0.004; hazard ratio (HR) with 95% confidence
interval (CI)¼ 2.3 (1.3–4.1)) and when stratified on each
CAPRA-S score (P¼ 0.016; HR¼ 2.3 (1.2–4.6)). Survival curves
grouped by the Nucleotyping classification are shown in
Supplementary Figure 4. The median (95% CI) sensitivity,
specificity and correct classification rate of our epigenetic marker
were 70% (54–83%), 65% (55–74%) and 67% (59–73%) in repeated
random sampling. Similarly, the classification accuracies were 73%,
66% and 68% in the combined learning and validation set.

In the combined set, Nucleotyping was significant in univariate
analysis (Po0.001; HR¼ 3.3 (2.1–5.1)) and with adjustment for
CAPRA-S (Po0.001; HR¼ 2.5 (1.5–4.1)). The epigenetic marker
and CAPRA-S showed low positive correlation (Spearman’s
r¼ 0.36, Po0.001). Medians (IQRs) for CAPRA-S and NPC were
5 (4–8) and 7 (4–10). Their concordance indices after bootstrap
optimism adjustment were 0.76 and 0.78, respectively, and the
difference was significant in internal validation (Po0.001).

Figure 2A and B illustrate that our epigenetic marker
substratified patients who were high-risk by clinical and patholo-
gical characteristics (CAPRA-S score X6: P¼ 0.001, HR¼ 2.4
(1.4–4.0)) and also patients at low or intermediate risk (CAPRA-S
score p5: P¼ 0.010, HR¼ 3.5 (1.3–9.6)). This additional prog-
nostic information could be incorporated in an NPC risk-
stratification tool by letting Nucleotyping separate the intermedi-
ate- and high-risk CAPRA-S groups, as visualised in Figure 3. The
bootstrap optimism-adjusted concordance index for the NPC risk
groups was 0.75, which was 0.045 higher than for the CAPRA-S

A B

C Nucleotyping indicates: RECURRENCE NO RECURRENCE

–0.06 –0.05 –0.04
–0.043

–0.03

Chromatin value:

–0.045

Figure 1. How to obtain the Nucleotyping classification of a
prostate cancer patient. (A) After surgery, nuclei of the prostate
cancer specimen are imaged. (B) Spatial variations in DNA density near
the nuclear periphery are described by a single value, which is the
chromatin value for the patient. (C) A fixed threshold is applied to
obtain the estimated prognosis, either recurrence or no recurrence.
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risk groups (Po0.001). Figure 4A displays the increased net benefit
of the NPC risk stratification.

The prognostic impact of Nucleotyping within each Gleason
category is shown in Figure 2C–F. Besides the small group of
patients with Gleason score p6 which consisted of 18 patients,
only one with recurrence, the epigenetic marker provided
additional prognostic information in each Gleason category with
significance for Gleason score 3þ 4 and 4þ 3.

DNA ploidy was statistically significant in univariate analysis
(P¼ 0.010; HR¼ 1.7 (1.1–2.5)), but not when stratified on each
CAPRA-S score (P¼ 0.83; HR¼ 0.95 (0.61–1.48)). Nucleotyping
was able to identify patients at increased risk of recurrence in each
DNA ploidy group (Figure 2G and H). Univariate and multivariate

analysis of all candidate markers are shown in Supplementary
Table 1.

Patients with Gleason score 7. Nucleotyping was significant
among patients with Gleason score 7 with adjustment for CAPRA-
S (validation: P¼ 0.006, HR¼ 4.3 (1.4–13.1); combined set:
P¼ 0.002, HR¼ 2.9 (1.4–5.8)). The bootstrap optimism-adjusted
concordance index for the NPC score was 0.77 in this subgroup of
the combined set, compared with 0.74 for the CAPRA-S score, a
difference which was significant (Po0.001). Correspondingly, the
three NPC risk groups gave a concordance index of 0.75, while the
CAPRA-S risk groups gave a significantly lower index of 0.71
(Po0.001). The NPC risk stratification improved the net benefit
compared with the three CAPRA-S risk groups (Figure 4B).

Heterogeneity analysis. In total, 199 (19%) tumour block samples
indicated recurrence according to Nucleotyping; for any given
patient, at most four samples indicated recurrence (Supplementary
Figure 5). No samples indicated recurrence in 164 (53%) patients,
which were the patients Nucleotyping classified as not recurring.
Although the epigenetic marker correctly identified 73% of the
recurring patients, only 31% of their samples indicated recurrence.
Typically, Nucleotyping indicated patient recurrence because of a
single tumour block sample, but multiple samples indicating
recurrence correlated with worse patient outcome (one vs multiple
samples indicating recurrence: P¼ 0.006, HR¼ 1.9 (1.2–3.0);
Supplementary Figure 6).

Sensitivity analyses. The prognostic value of Nucleotyping was
robust to alterations in the applied definition of small cell nuclei
and changes in number of analysed cells (Supplementary Figure 7).
In addition, the epigenetic marker was a significant predictor of
metastasis (P¼ 0.003, HR¼ 2.4 (1.3–4.3)) and cancer-specific
survival (P¼ 0.013, HR¼ 2.6 (1.2–5.9)).

DISCUSSION

Nucleotyping by texture analysis near the periphery of small cell
nuclei was an independent prognostic marker in prostate cancer in
both validation and the combined learning and validation set. The
expected validation performance measured by repeated random
sampling was similar to the performance in the combined set,
justifying the application of the combined set for analysis.

Our novel epigenetic marker significantly enhanced CAPRA-S
both as score and as three-grouped risk stratification. The
integrated model was superior to CAPRA-S, demonstrated by
significantly increased concordance with patient outcome and
improved net benefit (Figure 4). In particular, there was strong
evidence for improved prediction of recurrence for patients at
high-risk by clinical and pathological characteristics (CAPRA-S
score X6; Figure 2A).

Even when centrally reviewed by an experienced uropathologist,
Nucleotyping substratified patients with intermediate Gleason
score, either 3þ 4 or 4þ 3 (Figure 2D and E). Merging
Nucleotyping with the three CAPRA-S risk groups markedly
augmented the predication accuracy for these patients, increasing
the concordance index from 0.71 to 0.75 and amplified the net
benefit. Proper identification of low-risk patients with Gleason
score 7 tumours is challenging, but important, as illustrated by the
difficulties in distinguishing Gleason score 3þ 4 patterns from
4þ 3 and the debate on including Gleason score 3þ 4 patients in
active surveillance programs. Our epigenetic marker thus meets a
particular need for improved prognostication in this patient
subgroup.

DNA ploidy analysis has been shown to provide prognostic
information in prostate cancer (Pretorius et al, 2009; Böcking et al,
2014; Danielsen et al, 2015). In this patient series, we found DNA

Table 1. Characteristics of the studied patients

Patient
characteristics N

No
recurrence,

n (%)
Recurrence,

n (%) P-value
Study cohort 307 207 100

Nucleotyping o0.001a

Indicated no recurrence 164 137 (66) 27 (27)
Indicated recurrence 143 70 (34) 73 (73)

DNA ploidy o0.001a

Diploid 180 135 (65) 45 (45)
Non-diploid 127 72 (35) 55 (55)

CAPRA-S risk group o0.001a

Low (0–2) 46 45 (22) 1 (1)
Intermediate (3–5) 108 92 (45) 16 (17)
High (6–12) 147 68 (33) 79 (82)

Age, years 0.84b

Median 63 63 63
IQR 58–67 58–67 58–68

Preoperative PSA,
ng ml�1

o0.001a

p6 79 66 (32) 13 (13)
46 and p10 62 54 (26) 8 (8)
410 and p20 93 52 (25) 41 (42)
420 70 35 (17) 35 (36)

Gleason score o0.001a

p6 18 17 (8) 1 (1)
3þ4 118 105 (51) 13 (13)
4þ3 88 57 (28) 31 (31)
X8 83 28 (14) 55 (55)

SM o0.001a

Negative 119 96 (46) 23 (23)
Positive 188 111 (54) 77 (77)

ECE o0.001a

Absent 78 71 (35) 7 (7)
Present 226 134 (65) 92 (93)

SVI o0.001a

Absent 238 182 (88) 56 (56)
Present 69 25 (12) 44 (44)

LNI 0.004a

Absent 292 202 (98) 90 (90)
Present 15 5 (2) 10 (10)

Follow-up time, months 0.010b

Median 126 117 148
IQR 88–171 84–168 105–174

Abbreviations: CAPRA-S¼Cancer of the Prostate Risk Assessment Postsurgical;
ECE¼extracapsular extension; IQR¼ interquartile range; LNI¼ lymph node invasion;
PSA¼prostate-specific antigen; SM¼ surgical margins; SVI¼ seminal vesicle invasion.
aPearson’s w2-test.
bMann–Whitney’s U-test.

BRITISH JOURNAL OF CANCER Chromatin changes predict prostate cancer relapse

4 www.bjcancer.com | DOI:10.1038/bjc.2016.96

http://www.bjcancer.com


1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR

NNR
NR

P = 0.001

54 41 20 4
93 53 31 7

No. at risk

Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P = 0.65

NNR
NR

No. at risk

Time (years)Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P = 0.010

NNR
NR

No. at risk

Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15
N

on
-r

ec
ur

re
nc

e 
(p

ro
ba

bi
lit

y)

NNR
NR
P = 0.045

NNR
NR

No. at risk

Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P = 0.15

NNR
NR

No. at risk

Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P < 0.001

NNR
NR

No. at risk
Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P = 0.001

NNR
NR

No. at risk

Time (years)

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15

N
on

-r
ec

ur
re

nc
e 

(p
ro

ba
bi

lit
y)

NNR
NR
P=0.008

NNR
NR

No. at risk

15 12 5 2
2333

47 40 18 3
41 27 18 6

114 93 30 7
66 48 25 10

106 93 31 7
48 41 27 12

79 69 22 5
39 34 21 9

23 15 6 1
60 31 17 3

50 43 21 4
77 47 34 10

A B

C D

E F

G H

Figure 2. Kaplan–Meier curves of recurrence probability after radical prostatectomy grouped by Nucleotyping. (A) Patients with high CAPRA-S
(score X6). (B) Patients with low or intermediate CAPRA-S (score p5). (C) Patients with low Gleason score (p6). (D) Patients with Gleason score
3þ4. (E) Patients with Gleason score 4þ 3. (F) Patients with high Gleason score (X8). (G) Patients with diploid DNA ploidy type. (H) Patients with
non-diploid DNA ploidy type. Abbreviations: CAPRA-S¼Cancer of the Prostate Risk Assessment Postsurgical; NNR¼Nucleotyping indicated no
recurrence; NR¼Nucleotyping indicated recurrence.
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ploidy to be a significant prognostic marker in univariate analysis
and that Nucleotyping provides additional information and is an
even stronger prognostic marker (Figure 2G and H; Supplementary
Table 1).

Marked heterogeneity was observed in our patient cohort. Among
the recurring patients, only 31% of their samples had epigenetic
characteristics indicating recurrence even though Nucleotyping
correctly classified 73% of them. The risk of patient recurrence
gradually increased with the number of samples indicating
recurrence according to our epigenetic marker (Supplementary
Figures 5 and 6), suggesting that the presence of similar epigenetic
aberrations at multiple foci correlates with a more advanced disease.
Further investigations are warranted to validate this prognostic trend
and identify its mechanistic foundation.

Robustness is essential for a clinically applicable prognostic
marker. The studied small cell nuclei constituted only 6% of all
epithelial nuclei. Sensitivity analyses showed that Nucleotyping was
robust to changes in number and size of analysed nuclei
(Supplementary Figure 7). Moreover, the epigenetic marker
delineated the patient outcome in analyses of time to metastasis
and cancer-specific survival, demonstrating that the marker also
correlates with later and harder oncologic endpoints.

The observed DNA density patterns in the proximity of
the nuclear periphery (data not shown) were in accordance
with observations by Nielsen et al (2001) in early ovarian cancer.

Patients with recurrence were associated with decreased DNA
density near the periphery of the nuclei and increased DNA
density in the nuclear interior. As peripheral chromatin is typically
more condensed in normal cell nuclei than interior chromatin, this
agrees with observations that the radial arrangement is reduced
in tumour cell nuclei (Cremer et al, 2003; Zuleger et al, 2011).

Although it is preferable that only a single tumour block sample
is applied to assert a biomarker, the heterogeneity in prostate
cancer implies that multiple sampling may be essential to obtain
the best prognostication. Indeed, most pathological assessments,
including Gleason grading, utilise all samples and we have
therefore applied multiple samples to assess the Nucleotyping
classification.

Extensive PSA testing in recent years has led to earlier diagnosis
and the discovery of disease that would previously not have been
detected. Current prostate cancer patients thus have fewer and
later recurrences and less aggressive clinical and pathological
characteristics. The majority of patients included in this study were
diagnosed prior to extensive PSA testing. The high recurrence rate
and long follow-up in the present patient cohort makes it
particularly applicable to analyse more advanced prostate cancer
patients by today’s standard.

In conclusion, Nucleotyping by texture analysis near the
periphery of the smallest cell nuclei is an objective and inde-
pendent prognostic marker in prostate cancer. It was integrated
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Figure 3. Flowchart illustrating the definition of the three NPC risk groups. Abbreviations: CAPRA-S¼Cancer of the Prostate Risk Assessment
Postsurgical; NPC¼Nucleotyping-pathological-classifier.
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Figure 4. Survival decision curves for predicting 10-year post-radical prostatectomy time to recurrence (TTR) for (A) all patients and (B) patients
with Gleason score 7. CAPRA-S and NPC, both grouped in three risk groups, were converted into 10-year TTR probabilities before estimating net
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with CAPRA-S and then significantly enhanced the risk-stratifica-
tion of patients treated with radical prostatectomy. The improve-
ment was most distinct for patients with high-risk CAPRA-S scores
and for patients with Gleason score 7. Nucleotyping may therefore
be applicable for treatment management of prostate cancer
patients. An independent multicentre trial to validate the
prognostic impact is warranted.
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